Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

mcm逆变器

发布时间:2026-02-23 05:10:14 人气:



IEEE JSSC更新|用于芯片到芯片通信的基于低功耗逆变器的交流耦合链路

IEEE JSSC更新:用于芯片到芯片通信的基于低功耗逆变器的交流耦合链路

本文介绍了一种新的互连解决方案——基于逆变器的短程交流耦合切换(ISR-ACT)链路,该链路设计用于通过silicon interposer或类似的高密度互连进行非常短距离的芯片到芯片通信。

一、技术背景与需求

随着高性能计算需求的不断增长,芯片间传输大量数据对高密度、低功耗互连的需求也在不断增加。将多芯片模块(MCM)转移到silicon interposer上以适应更高带宽密度的趋势日益明显。然而,现有的中短程接口通常功耗过高,无法满足这些基于interposer的chiplet系统的需要。因此,ISR-ACT链路应运而生。

二、ISR-ACT链路的核心技术

ISR-ACT链路采用了多种功耗降低技术,以实现超低功耗,并在发送器(TX)和接收器(RX)之间提供直流电压隔离,从而实现不同工艺节点芯片之间的通信。这些技术包括:

取消接收器终端

对于插接器等短距离信道,反射主要发生在端点,因此只需要在发送端进行终端处理。

如图1(a)所示,未端接的RX信号摆幅来自TX驱动器的轨至轨信号。

通过电容分压器减少摆幅

对于衰减极小的短信道,没有必要使用全摆幅信号。

如图1(b)所示,TX上的一个小型串联电容器与线路电容形成一个电容分压器,从而减小信号摆幅,降低驱动要求和功率。

增加直流通路和减少反射

为确定直流工作点并避免过度反射,在TX和RX增加了直流偏置路径。

有意使信号迹线产生损耗,从而抑制残余反射。如图2所示。

将RX直流与TX去耦

为了在TX和RX之间实现电压隔离,需要移除TX直流通路。

如图3所示,RX利用正反馈形成一个锁存器,独立于TX建立并保持线路上的直流电平。

三、电路实现与链路结构

ISR-ACT收发器的结构如图4所示。TX通过小型片上电容器Cac传输交流耦合数据转换。交流峰峰值振幅Vac_ppk由电容比设定。RX是一个两级锁存器,通过Rn和Rp实现反馈,确保在两个稳定的直流状态之间切换。

为优化信号摆幅和眼质量,对1.2毫米通道进行了Cac仿真。如图5所示,80%的Cac值可提供最佳抖动,而100%的Cac值(标称150fF)则可容纳±15%的变化。

ISR-ACT链路架构如图6所示,采用延迟匹配时钟转发方案。在20线路PHY中,每个方向有19个数据TX/RX线路和一个转发时钟线路。作为多级系统,多个PHY可以叠加以获得更高带宽,如图7所示,带有4个PHY的4级配置可提供1.9Tb/s的总带宽。

四、测量结果

ISR-ACT链路在5nm测试芯片中实现,并通过1.2毫米的片上通道以25.2Gb/s/wire的速度进行了测量。测量结果包括比特误码率(BER)和眼差。如图8所示,在BER=1e-12时,水平眼开度为0.66 UI;在BER=1e-25时,眼差仍超过0.53UI。此外,图8还绘制了0-90°C下16-25.2Gb/s的跨工艺角眼余量。

功耗方面,如图9所示,在25.2Gb/s/wire条件下,物理层总功耗为90.8mW,其中输出驱动器的功耗仅为11%。使用时钟门控时,超过90%的功耗随活动而变化,静态功耗仅为7.9mW。ISR-ACT链路实现了0.190pJ/bit的能效,这是迄今为止在这些数据速率下所报告的芯片到芯片互连的最佳能效。

五、更长距离的潜力

虽然ISR-ACT拓扑针对1.2毫米通道进行了优化,但仍可通过增加耦合电容Cac在更长的线路上发送信号。如图10所示,在3.3mm信道上以25Gb/s速率模拟的眼图中,Cac增加了一倍(达到300fF),仅增加了7fJ/bit的功率,就恢复了眼裕度。

六、结论

ISR-ACT链路是高能效解决方案,适用于通过内插器和高密度互连进行的极短距离芯片到芯片通信。采用交流耦合、电容信号摆幅减小和正反馈锁存技术,在25.2Gb/s线速下实现了0.19pJ/bit的超低功耗运行,同时在发送和接收芯片之间提供了直流隔离。ISR-ACT架构具有750mV的低电源电压和高带宽密度,非常适合扩展未来基于芯片的计算系统。

和谐号CRH1型电力动车组的分类

新一代CRH1A型动车组,是庞巴迪公司利用ZEFIRO高速列车平台设计的新一代高速动车组,其设计为8编组,定员613人。采用铝合金鼓型车体,最高速度250km/h。目前由青岛四方庞巴迪铁路运输设备有限公司(BST)生产。ZEFIRO高速列车平台,其理念是节能、大容量、可以满足个性化的舒适、仿生设计。该平台包括动力车和拖车,目前ZEFIRO平台设计出来的列车有三款,250km/h级别的是我国的CRH1E、新CRH1A(ZEFIRO 250NG)型动车组,300km/h级别的是意大利Frecciarossa 1000动车组,380km/h级别的是我国的CRH380D。

新一代CRH1A型动车组,采用更为流线型的头型设计,同时由原来的不锈钢车体改为铝合金车体,改善了车体气密性。优化了转向架悬挂,提高了稳定性。全列定员613人。

2015年1月,新一代CRH1A-1169、1170两列动车组在秦沈客运专线进行动力学试验。2015年8月,新一代CRH1A-1169型动车组在沪昆高铁进行试验。

2016年2月1日,新一代CRH1A-1169型动车组正式在广珠城际铁路载客运行。 CRH1A型动车组的原型车是庞巴迪运输为瑞典国家铁路提供的Regina C2008型。2004年6月,铁道部展开为用于中国铁路第六次大提速、时速200公里级别的第一轮高速动车组技术引进招标,中外合资企业青岛四方-庞巴迪-鲍尔铁路运输设备有限公司(BSP)为中标厂商之一,获得了20列的订单。2004年10月12日,铁道部与BSP正式签订合同,合同编号790,铁道部代表签约方为广州铁路(集团)公司。2005年5月30日,广深铁路股份有限公司决定以25.83亿元人民币的价格向BST另外订购20列时速200公里级别动车组,以满足广深铁路第四线于2008年开通之后的运营需求;同年8月25日,广深铁路公司董事会通过有关议案。而BSP的40列时速200公里级别动车组其后最终被定型为CRH1A,动车编号为CRH1A-001A~CRH1-040A。

CRH1A采用交流传动及动力分布式,标称速度为200公里/小时,持续运营速度为200公里/小时,最大运营速度为250公里/小时,但实际运用中CRH1A的最大运营速度受动车组微机控制系统软件锁定(软件限速),初期最高运营速度为205公里/小时,至后期大部分均放宽至220公里/小时。列车编组方式是全列8节,包括5节动车及3节拖车(5M3T),其中包括2节一等座车,5节二等座车,1节二等座车/餐车。动车组轴重不大于16吨,牵引总功率5300千瓦,车体为不锈钢焊接结构。列车在2、7号车厢设有受电弓及附属装置,受电弓工作高度最低5.3米、最高6.5米。动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。车端连接装置采用德国系统的夏芬伯格式10号(英语:Scharfenberg Type 10、德语:Scharfenbergkupplung Typ 10)密接全自动车钩,内置机械、空气、电气连接机构和通路。头车两端采用半自动密接车钩,内有机械、空气连接机构和通路,带有车钩引导杆(Coupler alignment bar),容许两组动车重联运行。列车网络控制系统采用符合IEC 61375标准的TCN分布式智能网络系统,通过网络对列车及各设备实施控制、监视和诊断。

牵引及供电系统方面,CRH1型电力动车组采用交-直-交传动,即牵引电源经过单相定频交流电压→固定直流电压→三相变压变频交流电压的转换后,供应交流牵引电动机并驱动列车运行。首先,受电弓通过接触网接入25,000V(50Hz)的高压交流电,输送给牵引变压器,降压成单相902V(50 Hz)的交流电。降压后的交流电再输入整流器,2台并联的四象限脉冲整流器模块(LCM)将输入的交流电整流成两路1650V直流电,其中一路直流电再经2台IGBT牵引逆变器模块(MCM)逆变成电压和频率均可控制的三相交流电,输送给牵引电动机牵引列车。同时,另一路直流电输入辅助逆变器模块(ACM),同步将1650V直流电逆变成三相876V(50 Hz)交流电,输出至滤波箱的三相变压器,变压并输出三相400V(50 Hz)交流电源输出至列车上的用电设备。另外,牵引变流器在再生制动过程中,也负责将牵引电动机产生的电能反馈至电网上。动车组的牵引电动机采用了三相鼠笼异步交流电动机,架悬式安装在转向架上,冷却方式为强迫风冷,电动机控制方式为矢量控制。电动机通过联轴节链接驱动齿轮,最后带动轮对输出力矩。

CRH1A动车组全部由BSP在青岛的厂房组装生产。第一组列车(CRH1-001A)于2006年8月30日在青岛出厂,并在同年9月至12月间先后到北京环型铁路试验场、遂渝铁路、京沪铁路、胶济铁路、陇海铁路和广深铁路等地进行试验。2007年2月1日起,CRH1A动车组正式开始在广深线投入载客试运行,首发车次为T971次,由广州东站出发前往深圳站。最初生产的11组CRH1A(CRH1-001A~011A)的风笛是置于驾驶室挡风玻璃上方,在其后出厂的车辆(CRH1-012A~040A)则改至列车首尾两端的连结器整流罩两侧。而首批CRH1A型的最后一列(CRH1-040A)已于2009年3月7日出厂并交付上海铁路局。CRH1A又在2009年10月开始配属成都铁路局,运行重庆北-遂宁-成都的城际列车。

2010年7月,中国铁道部向BST追加订购40列CRH1A(CRH1-081A~CRH1-120A),订单总值7.61亿美元,折合约52亿元人民币,其中庞巴迪的份额为3.73亿美元。这批CRH1A增购车将于2010年9月开始交付,到2011年5月交付完毕。第二批CRH1A动车组在第一批的基础上作了少量改进,除了列车最大运营速度因取消了软件限速而达到时速250公里/小时,及对部分列车设备重新布置,最明显的差异是四号和五号车厢的座席布置。五号车厢由二等座车/餐车(ZEC)改为一等/二等座车(ZYE),采用一等包厢座席和二等座混合布置,二等座座席数量减少至61个,但新增了四个一等座包间共16个座席,其中2人包间和6人包间各两个,五号车厢总定员77人。而四号车厢则由二等座车改成二等座车/餐车。按铁道部统一计划,CRH1A增购车将供南昌铁路局、成都铁路局和广州铁路集团分配运用。

2012年9月,中国铁道部更改有关和谐号CRH380D型电力动车组的订单,在新订单中,铁道部将订购46列CRH1A及60列新一代CRH1 。新一代CRH1将使用铝合金车身以减轻重量、增强牵引系统、优化列车气密性及减少能源消耗。

由于CRH1主要用于城际运输,加上车体外观与地铁列车相似,而其原形车(Regina C2008)在国外都是以两节或三节短编组运行,所以中国国内铁路迷普遍将CRH1型动车组称为“地铁”。铁道迷对此型车有“大地铁”的昵称。列车通常运行沪宁、沪杭线的城际列车,其发车密度大约只有15分钟左右,犹如城市轨道交通线路;另外列车设计也酷似上海轨道交通6号线、8号线的AC10、AC12列车 。 BSP在2007年10月31日再获得铁道部40列16节编组动车组新订单,合同编号796。其中20列是在CRH1A基础上扩编至16节车厢的大编组座车高速列车,称为CRH1B,编号为CRH1-041B~CRH1-060B。全列16节编组中包括10节动车配6节拖车(10M6T),其中包括3节一等座车,12节二等座车,1节餐车。最高运营速度为200—250km/h,而车体外观不变。2009年3月5日,第一列CRH1B型动车组完成了BSP公司内部的环形线测试,3月8日开始在北京环行铁道试验。CRH1B动车组在2009年4月起配属上海铁路局,运行上海—南京、上海南—杭州的城际列车。整批20列CRH1B动车组在2010年4月交付完毕。2011年发生的动车组列车追尾事故中,D3115车次的列车就是这种型号。

2012年10月,原本属于第16列至第20列的CRH1E,按铁道部要求以原有CRH1E的头型制造成大编组的CRH1B,令到CRH1B总数增至25列。

而2007年10月31日签订的合同中另外20列动车组(CRH1-061E~CRH1-080E)以庞巴迪新研发的ZEFIRO 250系列为基础,为16节车厢的大编组卧铺动车组,每组包括10节动车配6节拖车(10M6T),最高运营速度为250公里/小时,成为世界上第一种能达到250公里/小时的高速卧铺动车组。列车所使用的庞巴迪MITRAC牵引系统由庞巴迪CPC牵引系统公司(庞巴迪在常州设立的中外合资公司)和庞巴迪在欧洲的工厂生产[5]。首12列CRH1E型动车组编组中有1节豪华软卧车(WG)、12节软卧车(WR)、2节二等座车(ZE)和1节餐车(CA),全列定员618人。其中位于10号车厢的高级软卧车每车定员16人,设8个包厢,每个包厢2个铺位,每个包厢中均有沙发和衣柜,但没有独立卫生间,车厢一端设有带转角式沙发的休息室。但由第13列动车组(CRH1-073E)起取消了高级软卧车,并以软卧车代替,全列定员增加至642人。

2009年10月,首列CRH1E型动车组出厂,并配属上海铁路局。2009年11月4日,CRH1E开始上线运营,担当来往北京、上海的D313/314次动车组列车。CRH1E实际交付15列(CRH1-061E~CRH1-075E),第15列于2010年8月交付 。

制动能量回收系统的解决方案

可以通过在发动机与电机之间设置离合器,在车辆减速时,使发动机停止输出功率而得以解决。但制动能量回收还涉及到混合动力车的液压制动与制动能量回收的复杂平衡或条件优化的协调控制。那么,为什么可以通过驱动电机能够回收车辆的运动能量呢?概要地说,其原因就是电机工作的逆过程就是发电机工作状态。

一般电学基础理论早已阐明,表示电机驱动的工作原理是Fleming的左手定则,而表示发电原理的则是Fleming右手定则。由于电机运转,线圈在阻碍磁通变化的方向上发生电动势。该方向与使电机旋转而流动的电流方向相反。于是人们称为逆电动势。逆电动势随着转速的增加而上升。由于转速增加,原来使电机旋转而流动的电流,其流动阻力加大,最后达到某一转速,就不能再向上超出。所以,制动时通过电机的电流被切断,代之而发生逆电动势。这就是使电机起到发电机作用的制动能量回收的原理。上述这种电机称为“电动机发电机。

然而,当制动能量回收制动实施时,如何处理脚制动。脚制动时,制动踏板行程(或强度)如何与制动能量回收系统保持协调关系。这是因为起到制动能量回收作用的制动部分,会引起减少脚制动的制动力。

因为对于脚制动来说,从制动能量回收中所起作用考虑,必须在减少脚制动的制动力方面做出相应措施。在制动力减少的同时,制动踏板的踏板力要求与踏板行程相对应。

重要的是,不论发生或不发生制动能量回收,与通常车辆一样,制动踏板的作用依然存在,为此,开发了一种称为行程模拟器(Stroke

Simulator)的装置。

1、丰田混合动力车的制动能量回收与液压制动的协调控制

丰田混合动力车制动能量回收系统是由原发动机车型的液压制动器(包括液压传感器、液压阀)与电机(减速、制动时起发电机作用,即转变为能量回收发电工况)、逆变器、电控单元(包括动力蓄电池电控单元、电机电控单元和能量回收电控单元)组成。

丰田的能量回收制动系统的特点是采用制动能量回收与液压制动的协调控制,其协调制动的原理是在不同路况和工况条件下首先确保车辆制动稳定性和安全性,同时考虑到动力蓄电池的再生制动的能力(由动力蓄电池电控单元控制)使车轮制动扭矩与电机能量回收制动扭矩之间达到优化目标的协调控制,并由整车电控单元实施集中控制。

当驾驶员踩制动踏板,则按照制动踏板力大小,通过行程模拟器(Stroke

Simulator)等部分,液压制动器(液压伺服制动系统)实时进入相应工作,紧接着制动能量回收系统也将进入工作状态。亦即如果动力蓄电池的电控单元判断动力蓄电池有相应的荷电量(SOC)回收能力,制动能量回收制动力占整个制动力的相应部分。当车辆接近停止时,制动能量回收系统制动力变为零。这两种制动力的能量变换比例与图1中所示相应面积的比例相当。当液压制动的面积小,制动能量回收制动的面积大时,表示制动能量回收量增加。增加制动能量回收的面积直接与降低燃油耗相关。但是在液压制动保持不变的状态下,只考虑制动能量回收率上升而增加制动力,导致驾驶员对制动路感变差不舒适。为解决这一问题开发了电子线控制动(Brake

by

Wire)的电子控制制动器(ECB:

Electronic

Control

Brake)。如图2所示,在电子控制制动器中,制动踏板与车轮制动分泵不是通过液压管路直接连接,而是通过电控单元(ECU)向液压能量供给源发出相应指令,使对应于制动能量回收制动强度的液压传递到相应车轮制动分泵。因此,制动能量回收制动与液压制动之和达到与制动踏板行程量相对应的制动力值,从而改善驾驶员制动操作时路感。

由图2可知,制动能量回收控制受到脚制动踏板力信号经过制动总泵与行程模拟器输入部再进入液压控制部(包括液压泵电机、蓄压器)的液压机构再经过制动液压调节传递到车轮制动分泵,同时该液压信号如果系统发生故障停止时,液压紧急启动,电磁切换阀开启,即又通过电磁阀切换,传递到车轮制动分泵。

2、本田第四代IMA混合动力系统的制动能量回收系统控制

本田第四代IMA混合动力系统应用在2010款Insight混合动力车上。其制动能量回收系统采用执行器和电控单元组成一体化模块型式,包括IMA系统电机控制模块、动力蓄电池监控模块和电机驱动模块。

制动能量回收系统工作过程如下:

IMA电机在制动、缓慢减速时,通过混合动力整车电控单元发出相应指令使电机转为发电机再生发电工况,通过制动能量回收控制系统以电能形式向动力蓄电池充电。其基本工作过程是:当制动时,制动踏板传感器使IMA电控单元激活制动总泵伺服装置,通过动力蓄电池电控单元、能量回收电控单元、电机电控单元等电控单元发出相应指令,使液压机械制动和电机能量回收之间制动力协调均衡以实现最优能量回收。第四代IMA系统采用了可变制动能量分配比率,比上一代的制动能量回收能力增加70%

IMA电机、动力蓄电池电控单元、能量回收电控单元、电机电控单元等都属于本田第四代IMA混合动力系统的“智能动力单元IPU(Intelligent

Power

Unit)”组成部分。它是由动力控制单元PCU(Power

Control

Unit)、高性能镍氢蓄电池和制冷系统组成。PCU是IPU的核心部分,控制电机助力(即进入电动工况)。PCU通过接收节气门传感器输入的开度信号,按照发动机的有关运行参数和动力蓄电池荷电状态等信号决定电能辅助量,并同时决定蓄电池能量回收能力。PCU主要组成部分有蓄电池监控模块——蓄电池状态检测BCM(

Battery

Condition

Monitor)、电机控制模块MCM(Motor

Control

Module)、电机驱动模块MDM(Motor

Driver

Module)。

综观现有实用化的不同的混合动力系统,制动能量回收控制在细节上有所不同。一般都采用电子控制的液压制动与制动能量回收的组合方式,也称为电液制动伺服控制系统。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言