Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

电压源三相逆变器

发布时间:2025-08-22 23:20:45 人气:



逆变器的17种主要类型

逆变器的多样化类型主要基于输入源、输出相位、换向技术、连接方式、操作模式、输出波形以及输出电平数量。以下是17种主要类型的概述:

1. 按输入源分:电压源逆变器和电流源逆变器,前者针对恒定直流电压,后者则针对恒定直流电流。

2. 按输出相位:单相逆变器将直流电转换为单相交流,三相逆变器提供三相平衡的交流电,相位差120度。

3. 按换向技术:线路换向逆变器利用零电压换向,强制换向逆变器则通过外部整流实现换向。

4. 连接方式:串联逆变器通过一对晶闸管和RLC电路工作,负载串联;并联逆变器通过变压器与负载并联,涉及两个晶闸管等组件。

5. 操作模式:离网逆变器独立供电,并网逆变器既供电又回馈电网,双峰逆变器则具备两者功能。

6. 输出波形:方波逆变器输出简单但非正弦;准正弦波和纯正弦波逆变器提供更接近标准正弦波的输出。

7. 输出电平数量:两电平逆变器只有两个电平切换,多电平逆变器则能提供多个电平的复杂输出波形。

这些不同类型的逆变器根据实际需求和应用环境,提供了高效且多样化的电力转换方式。

PLECS 应用示例(78):三相电压源逆变器(Three-Phase Voltage Source Inverter)

三相电压源逆变器(VSI)模型展示了一个从直流电压源产生交流电流和电压的逆变器电路。此模型设计用于实现10千瓦的额定功率,并提出了三种不同的脉宽调制(PWM)方案来控制VSI输出。

直流电压源提供700伏的电压,代表系统中的电池、太阳能阵列或整流器。逆变器连接到230Vrms、50Hz的低压电网,电网表示为刚性交流电压源。并网电抗为基础阻抗的10%,并包含小电阻来模拟电感器损耗。电感器电流被初始化为单位功率因数下10kW的期望额定功率,以避免启动期间的瞬态。

可配置子系统“控制器Controller”包含三种常见的PWM方法:正弦PWM、空间矢量(SV)PWM和滞后PWM。选择不同的调制器类型将呈现不同的控制参数。通常,VSI输出端电压或参考电流将使用闭环控制方法动态计算,但在模型中使用固定值。正弦和SV PWM配置中,参考信号是VSI输出端子处的期望平均电压,VSI输出电流与电网电压相位差决定了输出电压幅度和角度。正弦PWM实现使用对称PWM组件,其采样参数配置对调制指数输入进行采样的不同方式。滞后PWM是一种电流控制的PWM方案,调节逆变器的输出电流至恒定迟滞带内的参考电流。

模型配置了运行多个实验,比较每个调制器的性能。通过检查输出波形、总谐波失真(THD)、谐波频谱分析和磁滞带,可以比较每种调制策略产生的谐波。

通过比较,发现SV PWM在输出端产生的谐波失真较小,与相同开关频率的正弦PWM相比。正弦PWM和SV PWM方案的主谐波以开关频率的整数倍为中心,而磁滞PWM产生的谐波是非周期性的,并在谐波频谱中具有频率含量。

模型讨论了无调节三相VSI的运行,并实现了三种调制技术,比较了每种调制策略产生的谐波。此模型授权英富美(深圳)科技有限公司提供翻译与发表,所有权属于瑞士商Plexim GmbH所有。如有任何用途,请先获得所有权人允许。

逆变器详解「分类、工作原理、结构」

逆变器是一种能够将低压直流电转化为220V交流电的设备,极大地方便了我们的生活。根据逆变器的输出电压(电流)相数,可以分为单相逆变器、三相逆变器、电流源逆变器、电压源逆变器、桥式逆变器、并联逆变器、串联逆变器、方波逆变器、准正弦逆变器和正弦逆变器。其中,单相逆变器和三相逆变器的输出电压(电流)分别为单相和三相,频率为50HZ或者60HZ。电流源逆变器和电压源逆变器的直流侧分别为电流源和电压源,其交流侧输出状态取决于逆变器中的开关管。桥式逆变器分为半桥式、全桥式和三相桥式逆变器。并联逆变器和串联逆变器分别由特定的元器件组成,用于特定工况。方波逆变器和准正弦逆变器的输出波形分别为方波和接近正弦波。正弦逆变器的输出波形几乎为正弦波形,波形比准正弦波更加平滑。

在结构组成方面,单相桥式逆变器通常包括升压电路、整流部分和逆变部分。升压电路将输入电压升压到220V,以便后级电路进行直流转交流变换。整流电路将升压电路输出的方波电压转换为脉冲方波,其幅值变为输入值的根二倍,并通过稳压和滤波使得输出电压接近直线值。逆变电路使用H桥通过PWM调制得到正弦波形。为了接近正弦波形,使用SPWM正弦脉宽调制技术计算控制H桥的PWM占空比随时间变化的值。通过调制后输出的波形就越贴近正弦波。输出端通常并联大电容作为滤波使用,以使波形更加平滑并提升带负载能力。

综上所述,逆变器通过将低压直流电转换为220V交流电,满足了我们在室外或脱离市电供应范围的地方使用家用电子设备的需求。通过不同类型的逆变器和结构组成,逆变器能够适应各种工况,并提供稳定、平滑的交流电输出。

一文看懂逆变器的17种主要类型

逆变器的17种主要类型

逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:

一、按输入源分类

电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。

电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。

二、按输出相位分类

单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。

三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。

三、按换向技术分类

线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。

强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。

四、按连接方式分类

串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。

并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。

半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。

全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。

三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。

五、按操作模式分类

独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。

并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。

双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。

六、按输出波形分类

方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。

准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。

纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。

七、按输出电平数量分类

两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。

多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。

以下是部分逆变器的展示:

综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。

逆变器的分类

逆变器是一种将直流电能转换为交流电能的装置,其分类方式多种多样,以下是逆变器的详细分类:

1. 按输出交流电能的频率分

工频逆变器:频率为50~60Hz的逆变器,适用于大多数家用电器和工业设备。中频逆变器:频率一般为400Hz到十几kHz,常用于特定工业应用,如航空电源。高频逆变器:频率一般为十几kHz到MHz,适用于高频信号处理和小型化设备。

2. 按输出的相数分

单相逆变器:输出单相交流电,适用于家用和小型工业设备。三相逆变器:输出三相交流电,适用于大型工业设备和电力系统。多相逆变器:输出多于三相的交流电,用于特定的高性能应用。

3. 按输出电能的去向分

有源逆变器:将电能向工业电网输送,常用于可再生能源发电系统。无源逆变器:将电能输向某种用电负载,如家用电器或工业设备。

4. 按主电路的形式分

单端式逆变器:结构简单,但输出能力有限。推挽式逆变器:输出能力较强,适用于中等功率应用。半桥式逆变器:结构相对复杂,但性能稳定,适用于较高功率应用。全桥式逆变器:输出能力最强,适用于大功率应用。

5. 按主开关器件的类型分

晶闸管逆变器:属于“半控型”逆变器,不具备自关断能力。晶体管逆变器:包括“全控型”逆变器,如电力场效应晶体管和绝缘栅双极晶体管(IGBT),具有自关断能力。

6. 按直流电源分

电压源型逆变器(VSI):直流电压近于恒定,输出电压为交变方波。电流源型逆变器(CSI):直流电流近于恒定,输出电流为交变方波。

7. 按输出电压或电流的波形分

正弦波输出逆变器:输出电压或电流波形接近正弦波,适用于对波形要求较高的负载。非正弦波输出逆变器:输出电压或电流波形为非正弦波,如方波、梯形波等,适用于对波形要求不高的负载。

8. 按控制方式分

调频式(PFM)逆变器:通过调节频率来控制输出电压或电流。调脉宽式(PWM)逆变器:通过调节脉冲宽度来控制输出电压或电流,具有更高的效率和更好的性能。

9. 按开关电路工作方式分

谐振式逆变器:利用谐振原理进行工作,具有高效率和小体积的优点。定频硬开关式逆变器:开关频率固定,但开关过程中存在较大的损耗。定频软开关式逆变器:开关频率固定,但采用软开关技术,减小了开关过程中的损耗。

10. 按换流方式分

负载换流式逆变器:通过负载来实现换流,适用于特定应用。自换流式逆变器:具有自换流能力,无需外部负载即可实现换流,适用于大多数应用。

以下是逆变器的一种常见类型——IGBT逆变器的示例:

综上所述,逆变器具有多种分类方式,每种分类方式都反映了逆变器在不同方面的特性和应用。在选择逆变器时,需要根据具体的应用场景和需求来选择合适的类型。

三相变频器工作原理详解

三相变频器的工作原理主要由以下几个部分组成

一、主电路结构

三相变频器的主电路是其核心部分,主要负责将工频电源转换为适合异步电动机的调压调频电源。主电路大体上可分为两类:

电压型变频器:此类变频器将电压源的直流电转换为交流电。其直流回路采用电容进行滤波,以稳定直流电压。

电流型变频器:与电压型不同,电流型变频器将电流源的直流电转换为交流电,并使用电感作为直流回路的滤波元件,以稳定直流电流。

二、主要构成部分

三相变频器主要由以下三部分构成:

整流器:整流器的作用是将工频电源(通常为50Hz或60Hz的交流电)转换为直流功率。这是变频器的输入部分,为后续的变换提供稳定的直流电源。

平波回路:平波回路主要用于吸收在变流器和逆变器过程中产生的电压脉动。这有助于减少电压波动,提高变频器的输出稳定性。对于电压型变频器,平波回路主要由电容组成;而对于电流型变频器,则主要由电感构成。

逆变器:逆变器是变频器的输出部分,负责将直流功率转换为适合异步电动机的交流功率。通过调整逆变器的开关频率和占空比,可以实现电动机的调速和调压功能。

三、工作原理简述

在三相变频器中,整流器首先将工频交流电源转换为直流电源,然后经过平波回路的滤波处理,最后由逆变器将直流电源转换为可调频调压的交流电源供给异步电动机。通过精确控制逆变器的开关状态,可以实现对电动机转速和转矩的精确控制。

综上所述,三相变频器通过其复杂而精细的电路设计和控制策略,实现了对异步电动机的高效、稳定调速和调压功能。

无刷直流电机控制-(二)BLDC电机驱动控制电路介绍

BLDC电机驱动控制电路介绍

如果需要电机转动起来,需要给电机转子一个旋转的磁场。对于三相无刷直流电机(BLDC)来说,直流电压源只为三相逆变器提供恒定电压,所以需要通过三相逆变器将直流电转换成三相电流,依次为不同线圈对通电。

一、三相逆变器电路

BLDC电机通过三相逆变器电路可以实现电机的换向逻辑。实质上,就是通过控制Q0~Q5六个开关的导通和切断,来控制右侧A、B、C三相电机定子上产生所需要的正弦电压。因此,我们需要控制的也就是这六个开关的开关周期。这里涉及到了一个算法,即空间矢量脉宽调制(SVPWM),该算法后续会详细讲解。

二、带霍尔传感器的BLDC电机控制电路

对于带有霍尔传感器的BLDC电机,其控制电路相对简单。霍尔传感器嵌入在电机非驱动端的定子中,当电机每转过60个电角度,其中一个霍尔传感器就会改变状态。因此,完成一个电周期需要六步。每一步都对应着不同的开关状态,从而控制电机的旋转。

三、无霍尔传感器的BLDC电机控制电路

对于无霍尔传感器的BLDC电机,我们需要通过其他方式来判断电机转子的位置。这里引入了反电动势的概念。当电机转动时,每个线圈绕组都会产生反电动势,根据楞次定律,该电动势的方向与线圈绕组的电压相反。每当电机发生换向时,即一个绕组从正电变为负电或从负电变为正电,反电动势的电压极性也会发生变化,即反电动势经过零值。因此,我们可以通过识别反电动势的过零点来识别电机的转速和位置,从而实现换向控制。

霍尔传感器信号、反电动势、输出转矩和电流之间存在一定的关系。每当电机发生换向时,霍尔传感器信号发生跳变,同时反电动势也经过零值,此时输出转矩和电流也会发生相应的变化。

四、BLDC电机控制算法的选择

BLDC电机的控制算法主要有两种:六步换向方波控制和磁场定向控制法(FOC)。

六步换向方波控制:这种方法相对简单,每次只有两相通电,不需要进行复杂的坐标变换。但是,它存在较大的转矩脉动和噪音。

磁场定向控制法(FOC):FOC是一种高性能的交流电机控制策略,可以实现电压矢量控制,从而精确控制电机定子磁场的方向和大小。它能够保证定子磁场与转子磁场时刻保持在90°,实现一定电流下最大的转矩输出。FOC的低速模式控制性能较好,正反向切换性能优异,并且可以进行电流(力矩)、速度、角度三个闭环控制。采用正弦波控制,噪音会比方波控制小很多。

综上所述,BLDC电机的驱动控制电路是实现其高效、精确控制的关键。通过合理选择控制电路和算法,可以充分发挥BLDC电机的性能优势,满足各种应用场景的需求。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言