Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

储能逆变器响应时间

发布时间:2025-08-22 23:10:20 人气:



100kw离网光伏储能系统方案

日均发电量246度,适配100kW负载,配备200kWh磷酸铁锂电池与智能调度模块,保障电力供应稳定。

1. 系统概述

该系统以光伏发电为核心,日均发电量246度,满足100kW负载日常运行。通过智能能量管理模块实现多能源协同:优先使用光伏电力驱动负载,富余电量储充电池;当电池电压不足或遇阴雨、夜间场景时,系统自动切换至市电或发电机,实现24小时不间断供电

2. 核心配置清单

光伏组件:150kW总功率,按1.5倍超配原则设计,采用550W/块单晶硅组件,需安装约273块(150000÷550≈273)。

储能电池磷酸铁锂电池×2组(单组100kWh,总容量200kWh),适配工商业场景中大负荷需求。

逆变器100kW工商业储能逆变器,实现直流转交流电,保障负载设备稳定运行。

3. 辅助设备与功能

智能调度模块:实时优化光伏、电池、市电/发电机的电力分配,延长电池寿命。

MPPT控制器:提升光伏阵列发电效率,适应光照强度变化。

BMS与汇流箱:前者保护电池过充/过放,后者集中管理光伏组串电流,确保系统运行稳定性。

储能pcs与逆变器区别

储能PCS与逆变器的区别主要在于功能和应用场景不同

功能不同

储能PCS:主要功能是控制蓄电池的充电和放电过程,确保蓄电池能够安全、高效地储存和释放电能。同时,它还能实现电网与蓄电池之间的能量双向流动,提高电力系统的稳定性和效率。逆变器:主要功能是将直流电转换为交流电。在可再生能源发电系统中,逆变器负责将电池板或风力发电机产生的直流电转换为可以并入电网或供离网负载使用的交流电。

应用场景不同

储能PCS:主要应用于需要蓄电池储能的电力系统,如微电网、分布式能源系统、智能电网等。在这些场景中,储能PCS可以平衡电力供需,提高电力系统的稳定性和可靠性。逆变器:广泛应用于各种需要直流电转换为交流电的场合,如太阳能发电系统、风能发电系统、电动汽车充电站等。在这些场景中,逆变器是实现可再生能源并网发电和电动汽车充电的关键设备。

储能变流器PCS:原理与模式解析

储能变流器PCS:原理与模式解析

储能变流器(Power Conversion System,简称PCS)是储能系统中的关键组件,负责实现电能的双向流动和高效转换。以下是对储能变流器PCS的工作原理及主要工作模式的详细解析。

一、储能变流器PCS的工作原理

储能变流器PCS,又称双向储能逆变器,是储能系统与电网之间电能双向流动的核心部件。其工作原理主要包括以下几个步骤:

直流电能输入:PCS首先接收来自太阳能电池板、风力发电机或其他直流电源的直流电能输入。直流电能转换:接收到直流电能后,PCS通过内部的DC/AC双向变流器将其转换为交流电能,以便将其储存在电池组中。储能电池充电:转换后的交流电能被输送到电池组中,完成储能电能的储存。储能电池放电:当需要使用储能电能时,PCS将电池组中的直流电能再次转换为交流电能,并输送到需要使用电能的设备中。交流电能输出:最后,PCS将转换后的交流电能输送到负载设备,满足其电能需求。

在整个工作过程中,PCS通过微网监控指令进行恒功率或恒流控制,确保电池充电和放电过程的安全稳定。同时,PCS还具有平滑风电、太阳能等波动性电源输出的功能,提高电网的稳定性和可靠性。

二、储能变流器PCS的主要工作模式

储能变流器PCS具有多种工作模式,以适应不同的应用场景和需求。以下是三种主要的工作模式:

并网模式

工作原理:在并网模式下,PCS与电网直接相连,实现储能电池与电网之间的双向能量转换。PCS通过精确的控制策略和电力电子技术,确保电池组的充电和放电过程与电网同步,并根据需要调整充放电功率。

应用场景:适用于电网稳定、需求波动不大,且需要充分利用可再生能源的场景。如太阳能和风能发电系统中,当可再生能源产生的电能超过负载需求时,PCS可以将多余的电能储存到电池组中;当负载需求增加时,则从电池组中释放电能。

优点:能够充分利用可再生能源,提高能源利用效率;同时,通过PCS的精确控制,确保电网的稳定性和可靠性。

离网模式

工作原理:在离网模式下,PCS与电网断开连接,独立为负载供电。PCS需要完全负责电池的充放电管理,确保在没有电网供电的情况下,为负载提供稳定的电力。

应用场景:适用于电网不稳定或无法接入电网的偏远地区、孤岛等场景。在这些场景中,PCS可以确保负载的电力供应不受电网的影响。

优点:具有独立性,不受电网的影响;通过PCS的精确控制,确保负载的电力供应稳定可靠。

混合模式

工作原理:混合模式结合了并网和离网模式的特点。在电网稳定时,PCS优先使用电网电能供电,并将多余的电能储存到电池组中;当电网不稳定或需求波动较大时,PCS切换到离网模式,独立为负载供电。

应用场景:适用于电网稳定性一般、需求波动较大,且需要确保供电可靠性的场景。如城市电网、工业园区等。

优点:具有灵活性和可靠性,可以根据电网和负载的情况动态调整工作模式;通过PCS的精确控制,确保电力系统的稳定性和可靠性。

三、储能变流器PCS的组成与功能特点

储能变流器PCS主要由双向变流器、控制单元、滤波器、保护单元和通讯接口等组成。其主要功能特点包括:

保护功能:具备多种保护功能,如过欠压、过载、过流、短路、过温等,确保储能系统在异常情况下能够安全、稳定地运行。孤岛检测能力:能够在电网失电时自动检测并切断与电网的连接,防止储能系统继续向失电的电网供电,确保设备和人身安全。通信功能:具备与上级控制系统及能量交换机的通信功能,可以通过标准通信协议与这些系统进行数据交换,实现远程监控和管理。并网-离网平滑切换控制:支持并网运行和离网运行,并能实现并网与离网的平滑无缝切换。高效率、高精度、可靠性高:采用先进的电力电子技术和控制策略,确保储能系统的运行效率和安全性。可编程性强、通信协议标准化:具有可编程性强的特点,可以根据用户的需求进行定制和优化;同时支持多种通信协议,方便与其他系统进行集成和通信。支持多种储能电池:如锂离子电池、铅酸电池等,不同的电池类型仅需要调整控制器的软件参数即可。最大功率点跟踪(MPPT):对于与可再生能源配套的储能变流器,MPPT算法能够实时调整工作点,以获取最大的能量输出。

综上所述,储能变流器PCS在储能系统中发挥着至关重要的作用,具有多种功能特点以确保储能系统的安全、稳定、高效运行。随着可再生能源的快速发展和智能电网建设的推进,储能变流器将在未来的能源系统中扮演更加重要的角色。

储能逆变器是否需要光纤通信

储能逆变器是否需要光纤通信,取决于具体应用场景的传输距离、电磁环境及数据需求。

1. 需要光纤通信的典型场景

• 长距离传输需求:当电池组、逆变器等设备分布间距达数百米时,光纤可解决传统电缆因信号衰减导致的失真问题,例如大型集中式储能电站。

• 强电磁干扰环境:在变电站等存在高压电磁场的场景中,光纤利用光信号抗干扰特性保障通信稳定,避免设备误动作。

• 高速数据传输要求:智能化储能系统需实时传输电池状态、充放电参数等高频数据,光纤的高带宽特性可确保数据实时性。

2. 无需光纤通信的适用情况

• 短距离通信场景:户用储能系统中设备集中布置,采用RS-485或CAN总线即可满足通信要求,同时降低布线复杂度与成本。

• 成本敏感型项目:光纤方案涉及光缆、光模块等额外硬件投入,在通信实时性要求不高的工商业储能场景中,经济型有线方案更具性价比。

选择通信方式时,建议优先评估项目的传输距离阈值、电磁干扰强度及数据吞吐量等核心参数,再匹配适宜的通信技术方案。

储能变流器是什么 储能变流器和光伏逆变器的区别

储能变流器是一种控制蓄电池充放电过程并实现交直流转换的设备,与光伏逆变器在功能和应用场景上存在显著差异

储能变流器的具体定义和功能定义:储能变流器,又称储能逆变器,是电力转换系统的重要组成部分。 功能:它负责控制蓄电池的充放电,实现直流电与交流电之间的转换。在无电网供电的情况下,储能变流器可以直接为交流负荷提供电力。

储能变流器与光伏逆变器的区别工作原理储能变流器:通过DC/AC双向变流器和控制单元,根据后台指令和电池状态信息,智能控制电池的充电或放电过程。 光伏逆变器:将光伏太阳能板产生的可变直流电压转换为市电频率的交流电,用于输电系统、电网和电站。 应用场景储能变流器:适用于需要稳定电力供应、减轻电网压力、提高能源利用效率的场景,如智能电网、微电网、分布式能源系统等。 光伏逆变器:主要用于将太阳能转换为电能,并输入电网或供本地使用,但受天气和白天黑夜的影响较大。 性能特点储能变流器:自用率高,电网故障时可切换到离网模式继续供电,发电功率稳定,不受天气影响。 光伏逆变器:自用率较低,电网故障时可能瘫痪,发电功率受天气和白天黑夜的影响较大。

综上所述,储能变流器和光伏逆变器在定义、功能、应用场景以及性能特点等方面存在显著差异。储能变流器以其独特的优势,在能源存储和电力转换领域发挥着重要作用。

低电压穿越标准(光伏、风电、储能)

低电压穿越标准(光伏、风电、储能)

一、光伏并网逆变器低电压穿越标准

光伏并网逆变器在低电压穿越方面的标准主要依据NB/T 32004-2013(及更新版本NB/T 32004-2018,但相关图示未变)中的规定。具体要求如下:

电站型逆变器:对于并入35kV及以上电压等级电网的逆变器,需具备一定的电网支撑能力,避免在电网电压异常时脱离,引起电网电源的波动。当逆变器交流侧电压跌至0时,逆变器能够保证不间断并网运行0.15s后恢复至标称电压的20%;整个跌落时间持续0.625s后逆变器交流侧电压开始恢复,并且电压在发生跌落后2s内能够恢复到标称电压的90%时,逆变器能够保证不间断并网运行。此外,逆变器在电力系统故障期间若未切出,其有功功率在故障清除后应快速恢复,自故障清除时刻开始,以至少10%额定功率/秒的功率变化率恢复至故障前的值。同时,逆变器在低电压穿越过程中宜提供动态无功支撑。

并网电压要求:当并网点电压在图1所示曲线1及以上的区域内时,逆变器必须保证不间断并网运行;当并网点电压在曲线以下时,允许脱网。

二、风力发电低电压穿越标准

风力发电低电压穿越标准依据GB/T 36995-2018中的规定。具体要求包括:

低电压穿越要求:风电机组应具有图2中曲线1规定的电压~时间范围内不脱网连续运行的能力。当电压跌落期间风电机组未脱网时,自电压恢复正常时刻开始,有功功率应以至少10%Pn/s的功率变化率恢复至实际风况对应的输出功率。同时,风电机组在并网点发生三相对称电压跌落时,应快速响应并注入容性无功电流支撑电压恢复,响应时间不大于75ms,且在电压故障期间持续注入容性无功电流。

高电压穿越要求:风电机组应具有图2中曲线2规定的电压~时间范围内不脱网连续运行的能力。在电压升高时刻及电压恢复正常时刻,有功功率波动幅值应在±50%Pn范围内,且波动幅值应大于零,波动时间不大于80ms。在电压高期间,输出有功功率波动幅值应在±5%Pn范围内。同时,风电机组在并网点发生三相对称电压升高时,应快速响应并注入感性无功电流支撑电压恢复,响应时间不大于40ms。

三、储能变流器低电压穿越标准

储能变流器低电压穿越标准依据GB/T 34120-2017中的规定。具体要求如下:

低电压穿越要求:当电力系统发生故障时,若并网点考核电压全部在储能变流器低电压穿越要求的电压轮廓线及以上的区域内时(如图3所示),储能变流器应保证不脱网连续运行;否则,允许储能变流器切出。储能变流器并网点电压跌至0时,储能变流器能够保证不脱网连续运行0.15s。同时,对电力系统故障期间没有切出的储能变流器,其有功功率在故障清除后应能快速恢复,自故障清除时刻开始,以至少30%额定功率/秒的功率变化率恢复至故障前的值。

动态无功支撑能力:当电力系统发生短路故障引起电压跌落时,储能变流器注入电网的动态无功电流应满足以下要求:自并网点电压跌落的时刻起,动态无功电流的响应时间应不大于30ms。同时,储能变流器注入电力系统的动态无功电流应实时跟踪并网点电压变化,并满足一定的数学关系式。

综上所述,光伏、风电和储能系统在低电压穿越方面均有明确的标准要求,以确保在电网电压异常时能够保持并网运行或快速恢复,为电网提供必要的支撑。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言