Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

导纳逆变器 如何计算三相六桥逆变器 导通损耗 mosfet

发布时间:2023-11-19 20:00:24 人气:

如何计算三相六桥逆变器 导通损耗 mosfet

首先需要知道该MOS管的导纳是多少,然后还需要控制波形和输入电压参数输出电压参数以及负载的参数,再带入公式进行计算即可。通常逆变器的输入电压为12V、24V、36V、48V也有其他输入电压的型号,而输出电压一般多为220V,当然也有其他型号的可以输出不同需要的电压。逆变器的关键参数是:输出功率、转换效率、输出波形质量。只要比较一下这些参数就知道这款逆变器质量如何了。逆变器是一种常用设备,只要是属于常用型号,一般在电气维修点以及几乎所有的电子市场都会有售的,而且只要是技术还可以的电气维修店都是可以维修的,电子市场就更可以维修了。如果是非常用型号或者功率很大的情况下就只能去电子市场或者网上定制了。逆变器是把直流电能转换为交流电能(一般情况下为220V,50Hz的正弦波)的设备。它与整流器的作用相反,整流器是将交流电能转换为直流电能。逆变器由逆变桥、控制单元和滤波电路组成。广泛应用于空调、电动工具、电脑、电视、洗衣机、冰箱,、按摩器等电器中。
逆变器在选择和使用时必须注意以下几点:
1)直流电压一定要匹配;
每台逆变器都有标称电压,如12V,24V等,
要求选择蓄电池电压必须与逆变器标称直流输入电压一致。如12V逆变器必须选择12V蓄电池。
2)逆变器输出功率必须大于用电器的最大功率;
尤其是一些启动能量需求较大的设备,如电机、空调等,需要额外留有功率裕量。
3)正负极必须接线正确
逆变器接入的直流电压标有正负极。一般情况下红色为正极(+),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极(+),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且应尽可能减少连接线的长度。
4)充电过程与逆变过程不能同时进行,以避免损坏设备,造成故障。
5)逆变器外壳应正确接地,以避免因漏电造成人身伤害。
6)为避免电击伤害,严禁非专业人员拆卸、维修、改装逆变器。

目前光伏并网发电设备中常用的MPPT(最大功率点)跟踪的方法有哪些?

一般常用扰动观察法(P&O),导纳增量法(INCond)。
还有并联功率补偿法;结合常规算法的复合MPPT算法;电流扫描法;短路电流脉冲法;Fibonacci搜索法;基于状态空间的MPPT算法等。
详细内容可参考http://wenku.baidu.com/view/39cec41eb7360b4c2e3f6439.html

什么是逆变器?

能把直流电转换成交流电。

目前电力电子在电力系统应用主要有哪些前沿的研究热点?

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善 这些设备的运行特性为主要目的。

(一) 大型发电机的静止励磁控制。静止励磁采用晶闸管整流自并励方式, 具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

(二) 水力、风力发电机的变速恒频励磁。水力发电的有效功率取决于水头 压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转 速亦随之发生变化。 风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。 此项应用的技术核心是变频电源。

(三)发电厂风机水泵的变频调速。发电厂的厂用电率平均为 8%,风机水泵耗电量约占火电设备总耗电量的 65%,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并有完整的系列产品。

(四)太阳能发电控制系统。开发利用无穷尽的洁净新能源———太阳能,是调整未来能源结构的一项重要战略措施。大功率太阳能发电,无论是独立系统 还是并网系统, 通常需要将太阳能电池阵列发出的直流电转换为交流电,所以具有最大功率跟踪功能的逆变器成为系统的核心。日本实施的阳光计划以 3~4kW 的户用并网发电系统为主,我国实施的送电到乡工程则以 10~15kW 的独立系统 居多,而大型系统有在美国加州的西门子太阳能发电厂(7.2MW)等。

在输电环节的运用

(一)柔性交流输电技术(FACTS) 交流输电或电网的运行性能。已应用的 FACTS 控制器有静止无功补偿器(SVC)、静止调相机(STATCON)、静止快速励磁器 (PSS)、串联补偿器(SSSC)等。近年来,柔性交流输电技术已经在美国、日本、瑞典、 巴西等国重要的超高压输电工程中得到应用。国内也对 FACTS 进行了深入 的研究和开发。

(二) 高压直流输电技术(HVDC) 流站可以搬迁,可以使中型的直流输电工程在较短的输送距离也具有竞争力。此外,可关断器件组成的换流器,由于采用了可关断的电力电子器件,可避免换相失败,对受端系统的容量没有要求,故可 用于向孤立小系统(海上石油平台、海岛) 供电,今后还可用于城市配电系统, 并用于接入。

近年来, 直流输电技术又有新的发展,轻型直流输电采用 IGBT 等可关断电力 电子器件组成换流器, 应用脉宽调制技术进行无源逆变,解决了用直流输电向无 交流电源的负荷点送电的问题。同时大幅度简化设备,降低造价。

(三) 静止无功补偿器(SVC) SVC 是用以晶闸管为基本元件的固态开关替代了电气开关, 实现快速、 频繁地以控制电抗器和电容器的方式改变输电系统的导纳。SVC 可以有不同的回路结构,按控制的对象及控制的方式不同分别称之为晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)或晶闸管控制电抗器(TCR)。

在配电环节的运用

配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能 质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力 (CustomPower)技术。用户电力技术(CP)技术和 FACTS 技术是快速发展的姊妹型 新式电力电子技术。 采用 FACTS 的核心是加强交流输电系统的可控性和增大其电力传输能力;发展 CP 的目的是在配电系统中加强供电的可靠性和提高供电质量。 CP 和 FACTS 的共同基础技术是电力电子技术,各自的控制器在结构和功能上也相同,其差别仅是额定电气值不同,目前二者已逐渐融合于一体,即所谓的 DFACTS 技术。具有代表性的用户电力技术产品有:动态电压恢复器(DVR),固态 断路器(SSCB),故障电流限制器(FCL),统一电能质量调节器(PQC)等。

我国电力电子技术的发展

1. 配电自动化前景

配电网自动化智能电网投资重中之重: 配电网作为输配电系统的最后一个环 节, 其实现自动化的程度与供用电的质量和可靠性密切相关。配电自动化是智能电网的重要基础之一。从投资构成上我们预计,智能电网的投资构成上,配网自动化将占 40%左右,是智能电网投资的重中之重。 我国配网自动化处于初级阶 段:配网自动化在我国处在起步阶段,国内城市配网馈线自动化率不足 10%,目 前国外配网自动化的比例达到 60%-70%,国内仍刚刚开始试点,未来市场空间广阔。

2. 配电自动化简介

配电自动化指:利用现代电子技术、通信技术、计算机及网络技术与电力设 备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的工作管理有机地融合在一起,改进供电质量, 与用户建立更密切更负责的关系, 以合理的价格满足用户要求的多样性, 力求供电经济性最好, 企业管理更为有效。 配电自动化是一个庞大复杂的、综合性很高的系统性工程,包含电力企业中与配电系统有关的全部功能数据流和控制。 从保证对用户的供电质量, 提高服务水平, 减少运行费用的观点来看,配电自动化是一个统一的整体。

配自动化包含以下配电自动化包含以下 4 个方面:①馈线自动化。馈线自动 化完成馈电线路的监测、 控制、 故障诊断、 故障隔离和网络重构。 其主要功能有: 运行状态监测、远方控制和就地自主控制、故障区隔离、负荷转移及恢复供电、无功补偿和调压等。②变电站自动化。变电站自动化指应用自动控制技术和信息 处理与传输技术, 通过计算机硬软件系统或自动装置代替人工对变电站进行监控、测量和运行操作的一种自动化系统。变电站自动化以信号数字化和计算机通信技 术为标志, 进入传统的变电站二次设备领域,使变电站运行和监控发生了巨大的 变化,取得显著的效益。变电站自动化的基本功能有:数据采集、数据计算和处理、越限和状态监视、开关操作控制和闭锁、与继电保护交换信息、自动控制的协调和配合、 与变电站其他自动化装置交换信息和与调度控制中心或集控中心通 信等项功能。变电站自动化技术是配电自动化的重点之一。③配电管理系统。配 电管理系统(DMS)是指用现代计算机、信息处理及通信等技术和相关设备对配电网的运行进行监视、管理和控制。它是配电自动化系统的神经中枢,整个配电自动化系统的监视、控制和管理中心。主要功能有:数据采集和监控(SCADA)、配 电网运行管理、 用户管理和控制、自动绘图/设备管理/地理信息系统(AM/FM/GIS) 等。④需求侧管理。通过一系列经济政策和技术措施,由供需双方共同参与的供用电管理。包含负荷管理、用电管理及需方发电管理等。需求侧管理的几个内容涉及电力供需双方, 甚至与电力管理体制有关, 必须通过立法和制订相应的规则, 并最终由电力市场来调节。可以看到,电力的供需双方不仅仅是一种电力买卖关 系,也是以双方利益为纽带的合作伙伴关系,在电力市场环境下,需求侧管理必将被重视。

3.配电自动化发展趋势

根据对国内外发展动态的研究,配电自动化技术的发展呈现以下特点:

1) 多样化 尽管配电自动化技术的发展经历了三个阶段,但是从日本等国家的应用情况看,各个阶段的技术都在使用,并且各有其适应范围:基于自动化开 关设备相互配合的馈线自动化系统适合于农网等负荷密度低、供电半径长、故 障较多而供电可靠性较差的区域;第二阶段的配电自 动化系统 (DAS)适合于 中小城市和县城;基于人工智能具有丰富高级应 用的第三阶段配电自动化系统 适合于大城市和重要园区; 甚至仅仅具有遥信和遥测功能而不具备遥控功能的配电网信息系统也有其应用前景,主要因为它可以直接采用公用通信资源 (如 GPRS 等),而不需要建设专用通信网。

2)集成化 配电自动化涉及面很广,它不但有自己实时信息采集的部分,还有相当多的实时、 非实时和准时实时信息需要从其它应用系统中去获取。 比如, 从地调自动化系统中获取主供电网和变电站信息; GIS 系统中获取配电线路拓 从 扑模型和相关图形;从 PMS 系统中获取配电设备参数;从用电营销系统/负荷控 制系统中获取用户信息等。因此, 配电自动化的主站不再是单一的实时监控系统, 而是将多个与配电有关的应用系统集成起来形成综合应用的系统。为了规范应用 系统间集成和接口,国际电工委员会制订了 IEC 61968 系列标准,提出运用信 息交换总线 (即企业集成总线),可将若干个相对独立的、相互平行的应用系 统整合起来,在实现信息交换的同时,使每个系统继续发挥自己的特色,形成一个有效的应用整体。

3) 智能化 配电系统是智能电网的重要环节,配电系统智能化则是配电自动化的发展方向。因此,配电自动化与实现智能电网密切相关,主要表现在: 自 愈配电技术。这就是配电自动化系统中馈线自动化的故障诊断、定位、隔离以及恢复供电的基本功能,在智能电网的背景下需要进一步升级为适应分布式发电的 双向能量流下的馈线自动化功能。 高效运行技术。这就是配电自动化系统中高 级应用软件功能。在智能电网的背景下需要进一步升级为考虑设备全生命周期的资产优化与智能调度业务功能。 分布式电源和储能系统的接入技术。这是配电 自动化系统面临的新要求, 尤其是涉及到配网潮流计算和分析以及分布式电源对电网的影响。 定制电力技术。根据电能质量的相关标准,以不同的技术和价格提供不同等级的电能质量, 以满足不同用户对电能质量水平的需求。配电自动化 系统是其技术支撑手段之一。用户互动技术。这就是配电自动化系统中停电管 理功能,在智能电网的背景下需要进一步升级为适应用户双向互动的业务功能。

现在我国的电力都在往智能电网这块发展,所以的技术和发展都在一步一步的智能化,相信电力电子技术在电力领域的应用可以加速电力系统的智能化发展。

求高频开关电源的EMC设计?

引 言

  目前,在计算机及外围设备、通信、自动控制、家用电器等领域中大量使用高频开关电源,但高频开关电源的突出缺点是能产生较强的电磁干扰(Electro Magnet-ic InteRFerence,EMI)。

  由于高频开关电源的一次整流桥是非线性器件,其形成的电流是严重失真的正弦半波,含有丰富的高次谐波,形成了一系列连续、脉动和瞬变干扰。因此,在高频开关电源设计中必须考虑电磁兼容性(Electro Magnet-ic Compatbility,EMC)的设计。

  电网完全在自然环境中,连接着各种电子电气设备,有着复杂的电磁转换过程,可能会引起一些问题:外来噪声使高频开关电源设备的控制电路出现误动作;通信设备由于高频开关电源设备的噪声而出现误动作;高频开关电源设备对电网产生噪声污染;高频开关电源设备向空间散发噪声。

  根据上述情况,针对高频开关电源存在的缺点,在此对其电路及印制电路板(Printed Circuit Board,PCB)进行了电磁兼容性的设计研究。

  1 高频开关电源的EMC设计

  1.1 高频开关电源主电路组成

  高频开关电源主电路组成框图如图1所示,它由输入滤波电路、高频逆变电路、输出整流电路及输出直流滤波电路等组成。

  1.2 输入滤波电路的EMC设计

  输入滤波电路的EMC设计如图2所示。

  VD2为瞬态电压抑制二极管,Rv1为压敏电阻,它们都具有很强的瞬变浪涌吸收能力,能很好地保护后级元气件或电路免遭浪涌电压的破坏。Z1为直流抗电磁干扰滤波器,必须良好接地,且接地线要短。L1和C1组成低通滤波电路,当L1的电感量较大时,必须增加VD1和R1形成续流回路,以吸收L1断开时释放时的电场能量,否则,L1产生的电压尖峰就会形成EMI。L1的磁芯使用闭合磁芯,可以避免开环磁芯的漏磁场形成EMI。C1采用大容量的电容,可以减少输入线上的纹波电压,减弱在输入导线周围形成的电磁场。

  1.3 高频逆变电路的EMC设计

  高频逆变电路的EMC设计如图3所示。

  C2,C3,VT2,VT3组成半桥逆变电路,VT2,VT3为IGBT或MOSFET等开关管。R4和C4构成EMI吸收回路,或在VT2,VT3两端并联C5,C6,由于VT2,VT3开通和关断时,开关时间很短以及引线电感、变压器漏感的存在,回路会产生较高的di/dt,du/dt,从而形成EMI。C4,C5,C6采用低感电容,其容量的大小由公式LI2/2=C△U2/2求得C的值(L为回路电感,I为回路电流,△U为过冲电压值)。

  1.4 输出整流电路的EMC设计

  输出整流电路的EMC设计如图4所示。

  VD6为整流二极管,VD7为续流二极管。由于VD6,VD7工作于高频开关状态,是产生EMI的主要源头。把R5,C12和R6,C13分别连接成VD6,VD7的吸收回路,用于吸收其开关时产生的电压尖峰。

  减少整流二极管的数量可减少EMI的能量,因此,在同等条件下采用半波整流比全波整流和全桥整流产生的EMI要小。为减少二极管的EMI,选用具有软恢复特性的、反向恢复电流小的且时间短的二极管。

  1.5 输出直流滤波电路的EMC设计

  直流EMI滤波器双端口网络模型如图5所示,其混合参数方程为:

  式中:g11为输入导纳;g22为输出阻抗;g12为反向电流增益;g21为正向电压增益。

  由式(1)可以等效出如图6所示的原理图。

  直流EMI滤波器的设计必须满足以下的要求:

  (1)要保证滤波器在滤波的同时不影响电源的带负载能力;

  (2)对于输入的直流分量,要求滤波器尽量不造成衰减;

  (3)对于谐波分量,滤波器要有良好的滤波效果。

  结合混合参数方程及等效原理图,根据第一条要求,应使滤波器的输入导纳和输出阻抗尽可能小,即g11=g22=0。根据第二条要求,在低频时反向电流增益g12和正向电压增益g21的设计值要尽量为1,而输入导纳和输出阻抗尽可能小,即g12=g21=1,g11=g22=0。根据第三条要求,在高频时,g11,g12,g21,g22都要尽可能的小。根据以上的条件,输出直流滤波电路的EMC设计电路如图7所示,L2,C17,C18组成LC滤波电路,减少输出电压、电流纹波的大小,从而减小通过辐射传播的EMI。滤波电容C17,C18应尽量采用多个电容并联,以减小等效串联电阻,从而减小纹波电压。输出电感L2应尽量大,以减小输出纹波电流。

  C19用于滤除导线上的共模干扰,选用低感电容,接线要短。C20,C21,C22,C23用于滤除输出线上的差模干扰,选用低感的三端电容。Z2为直流滤波器,滤波器的输入、输出线要屏蔽隔离。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言