发布时间:2024-01-17 10:20:26 人气:
求大神帮忙理解下这个逆变电路图
首先纠正一下图中的错误:在Q1、Q2栅极对地要增加两个电阻,同时将R6短接,否则是不能控制Q1、Q2的关断的。
先看一下SG3524的功能图:
工作原理:
1、振荡部分
SG3524是通用脉宽调制器(PMW),属于数字、模拟混合电路。它的振荡频率由6、7脚的R1、C1决定,f≈1.3/R1C1,图中参数的振荡频率约为87Hz。
2、驱动部分
SG3524内部有两个三极管轮流导通(截止)输出,用来驱动外部的场效应管Q1、Q2轮流导通与关断。
由于Q1、Q2是场效应管,栅极对地相当于一个电容,SG3524内部三极管导通时给栅极电容充电,使场效应管导通,但三极管截止时栅极电容需要放电才能使场效应管截止,增加的R9、R10就是这个作用。
3、变换输出
Q1、Q2轮流导通与关断,相当于在变压器T的原边输入一个交流电,在变压器输出端获得交流输出。
4、控制部分
利用SG3524的补偿端9脚进行控制。
补偿端9脚控制电位范围为1~3.5V,补偿端9脚电位越高输出占空比越小,最终的交流输出电压越低,补偿端9脚电位越低输出占空比越大,最终的交流输出电压越高。调节Rp可以调节补偿端9脚电位。
逆变器电路图
上图是一个简单逆变器电路图,其原理如下:
C2是隔直电容,可以保护电路不过载,R2是振教荡调节电阻,大小为1-2欧,L1,L2是初级线圈,L3、L4是自振荡线圈,L5是输出线圈。
电源接通,电流通过R2限流,流经L3、L4中间抽头,再经两头尾抽头到功率管基极导通功率管,经L1、L2初级线圈,产生一次初级电流,再经变压器耦合,在L5形成次级电流,第一次振荡完成。在L1、L2形成电流同时,L3、L4也通过变压器形成第二次感应电流,再次导通功率管,这样这个自激振荡电路就这样振荡下去,直到断电或管子烧坏。
用3524做的高频逆变器、频率50kHz/空载电流400mA、带上负载200W时不到2分钟、两边的场管发热很严重
负载端电流需求量太大,1A=1000mA 200W=0.2A=200mA求:SPWM全桥逆变器控制电路设计
摘要:论述了单相正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路作了详细的介绍,给出了输出电压波形的实验结果。 关键词:逆变器;正弦波脉宽调制;场效应管 引言 当铁路、冶金等行业的一些大功率非线性用电设备运行时,将给电网注入大量的谐波,导致电网电压波形畸变。根据我们的实验观察,在发生严重畸变时,电压会出现正负半波不对称,频率也会发生变化。这样的供电电压波形,即使是一般的电力用户,e799bee5baa6e4b893e5b19e31333332623937也难以接受,更无法用其作为检修、测试的电源。同时,在这种情况下,一般的稳压电源也难以达到满意的稳压效果。为此,我们设计了该逆变电源。其控制电路采用了2片集成脉宽调制电路芯片SG3524,一片用来产生PWM波,另一片与正弦函数发生芯片ICL8038做适当的连接来产生SPWM波。集成芯片比分立元器件控制电路具有更简单、更可靠的特点和易于调试的优点。 图1 系统主电路和控制电路框图 1 系统结构及框图 图1示出了系统主电路和控制电路框图。交流输入电压经过共模抑制环节后,再经工频变压器降压,然后整流得到一个直流电压,此电压经过Boost电路进行升压,在直流环上得到一个符合要求的直流电压350V(50Hz/220V交流输出时)。DC/AC变换采用全桥变换电路。为保证系统可靠运行,防止主电路对控制电路的干扰,采用主、控电路完全隔离的方法,即驱动信号用光耦隔离,反馈信号用变压器隔离,辅助电源用变压器隔离。过流保护电路采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在MOS管允许的过流时间内将其关断。逆变器电路图
上图是一个简单逆变器电路图,其原理如下:
C2是隔直电容,可以保护电路不过载,R2是振教荡调节电阻,大小为1-2欧,L1,L2是初级线圈,L3、L4是自振荡线圈,L5是输出线圈。
电源接通,电流通过R2限流,流经L3、L4中间抽头,再经两头尾抽头到功率管基极导通功率管,经L1、L2初级线圈,产生一次初级电流,再经变压器耦合,在L5形成次级电流,第一次振荡完成。在L1、L2形成电流同时,L3、L4也通过变压器形成第二次感应电流,再次导通功率管,这样这个自激振荡电路就这样振荡下去,直到断电或管子烧坏。
请告诉我光伏逆变器的电路图
光伏逆变器分独立型和并网型,电路图根据具体要求不同,有很多种。但基本上有升压电路(boost、推挽式等等)和逆变电路(单相和三相),网上你可以搜索相关文章或者阅读文献。我贴一个图你可以参考下。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467