Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器电度

发布时间:2026-02-18 06:40:38 人气:



逆变器电度

1、12V转220V逆变器的详细电路图如下:

2、逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)的设备。它由逆变桥、控制逻辑和滤波电路组成。

3、逆变器其实与转化器是一种电压逆变的过程。

扩展资料

1、逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。

2、处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,不但需要由电池或电瓶供给的低压直流电,同时更需要在日常环境中不可或缺的220伏交流电,逆变器就可以满足需求。

3、逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输出功率与输入功率之比,即逆变器效率为输出功率比上输入功率。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。

4、逆变器特点:

(1)、转换效率高、启动快;

(2)、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能;

(3)、物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;

(4)、带负载适应性与稳定性强。

参考资料:

百度百科-逆变器

逆变器继电器保护电路原理

逆变器继电器保护电路的核心原理是通过电压/电流检测、逻辑判断和执行机构的三级联动,在异常发生时迅速切断电路,保护逆变器和负载设备的安全。

1. 保护机制构成

(1)检测单元

电压检测:采用电阻分压网络实时采样直流侧输入电压和交流侧输出电压,异常过压/欠压时触发保护(如直流输入超过600V或交流输出超出220V±10%)

电流检测:通过霍尔传感器或采样电阻监测电流,过流阈值通常设定为额定值的120%-150%(例如5kW逆变器额定电流21.7A,保护值设为26-32A)

(2)控制单元

• 采用比较器电路MCU的ADC模块处理检测信号,与预设阈值比对

• 集成延时判断逻辑(通常10-100ms可调),避免误触发(如电机启动瞬时电流)

(3)执行单元

功率继电器:直流侧使用40A/1000V规格继电器,交流侧选用30A/250VAC规格

固态继电器(SSR):高频逆变器优先采用SSR,响应时间<10ms

2. 典型保护场景及参数

(1)过载/短路保护

• 电流超过设定值→比较器输出高电平→光耦隔离→驱动继电器线圈断电

• 动作时间分级:150%负载时延时5秒动作,200%负载时100ms内动作

(2)电压异常保护

• 直流输入过压:≥650V时立即切断(光伏组串开路电压保护)

• 交流输出失压:<180V持续500ms时断开负载

(3)反灌保护

• 检测电网电压相位,逆流值>额定输出5%时切断并网继电器

3. 安全设计要点

冗余检测:重要回路配置双传感器,信号采取"与"逻辑判断

故障锁存:保护触发后需手动复位,防止反复接通危险电路

电弧防护:继电器触点加装RC吸收电路(常用100Ω+0.1μF组合)

隔离设计:高低压电路间采用光耦或磁耦隔离,耐压≥4000VAC

注意:继电器保护电路需通过GB/T 37408-2019《光伏逆变器技术要求》规定的保护性接地测试,维修前必须确认直流电容已完全放电(电压表检测<50V)。

逆变器电路及工作原理

逆变器是通过电子开关管周期性通断,将直流电转化为交流电的关键设备,其核心在于逆变桥的开关动作与PWM调制技术。

一、逆变器电路组成

1. 直流电源:如蓄电池或太阳能电池板,为系统提供稳定直流输入。

2. 逆变桥模块:由MOSFET、IGBT等开关管组成桥式结构,直接承担直流到交流的转换任务。

3. 控制单元:通过PWM(脉冲宽度调制)芯片生成时序信号,精确控制开关管通断频率和占空比。

4. 滤波网络:由电感、电容构成LC滤波器,滤除高频脉冲成分输出平滑正弦波。

二、工作流程解析

1. 直流输入阶段:蓄电池等电源提供12V/24V/48V直流电,经输入端子接入逆变桥。

2. 开关管交替导通

- 以H桥电路为例,Q1与Q4导通时电流正向流经负载

- Q2与Q3导通时电流方向反转,形成50Hz基波

3. PWM波形优化:控制电路通过调节脉冲宽度,使电压平均值按正弦规律变化。比如输出220V时,脉冲峰值可达311V(220V×√2)。

4. 谐波滤除:含有30%以上谐波的逆变桥输出,经滤波器降至<5%后接入用电器。

以常见修正正弦波逆变器为例,其输出波形经过3级LC滤波后总谐波失真可控制在10%以内,而纯正弦波机型通过多阶滤波+数字信号处理技术,能达到<3%的工业级标准。

单相逆变器的电路原理

单相逆变器的电路原理

逆变器的工作原理是通过功率半导体开关器件的导通和关断作用,把直流电能变换成交流电能。单相逆变器的基本电路主要包括推挽式、半桥式和全桥式三种,虽然它们的电路结构有所不同,但工作原理相似。以下是对这三种电路原理的详细阐述:

一、推挽式逆变电路

推挽式逆变电路由两只共负极连接的功率开关管和一个一次侧带有中心抽头的升压变压器组成。升压变压器的中心抽头接直流电源正极,两只功率开关管在控制电路的作用下交替工作,输出方波或三角波的交流电。

优点:由于功率开关管的共负极连接,使得该电路的驱动和控制电路可以比较简单。另外,由于变压器具有一定的漏感,可限制短路电流,从而提高电路的可靠性。缺点:变压器效率低,带感性负载的能力较差,不适合直流电压过高的场合。

二、半桥式逆变电路

半桥式逆变电路由两只功率开关管、两只储能电容器和耦合变压器等组成。该电路将两只串联电容的中点作为参考点。当功率开关管VT1在控制电路的作用下导通时,电容C1上的能量通过变压器一次侧释放;当功率开关管VT2导通时,电容C2上的能量通过变压器一次侧释放。VT1和VT2轮流导通,在变压器二次侧获得交流电能。

优点:结构简单,由于两只串联电容的作用,不会产生磁偏或直流分量,非常适合后级带动变压器负载。缺点:当该电路工作在工频(50Hz或60Hz)时,需要较大的电容容量,使电路的成本上升。因此,该电路更适合用于高频逆变器电路中。

三、全桥式逆变电路

全桥式逆变电路由四只功率开关管和变压器等组成。该电路克服了推挽式逆变电路的缺点,功率开关管Q1、Q4和Q2、Q3反相,Q1、Q3和Q2、Q4轮流导通,使负载两端得到交流电能。

优点:克服了推挽式逆变电路的缺点,适用于各种负载场合。应用:在实际应用中,全桥式逆变电路常用于需要高输出电压和电流的场合。

四、逆变器波形转换过程

逆变器将直流电转换成交流电的转换过程涉及多个步骤。半导体功率开关器件在控制电路的作用下以高速开关,将直流切断,并将其中一半的波形反向而得到矩形的交流波形。然后,通过电路使矩形的交流波形平滑,得到正弦交流波形。

五、不同波形单相逆变器优缺点

方波逆变器

优点:线路简单,价格便宜,维修方便。

缺点:调压范围窄,噪声较大,带感性负载时效率低,电磁干扰大。

阶梯波逆变器

优点:波形类似于正弦波,高次谐波含量少,能满足大部分用电设备的需求。整机效率高。

缺点:线路较为复杂,使用的功率开关管较多,电磁干扰严重,存在谐波失真。

正弦波逆变器

优点:输出波形好,失真度低,干扰小,噪声低,适应负载能力强,保护功能齐全,整机性能好,效率高。

缺点:线路复杂,维修困难,价格较贵。

综上所述,单相逆变器通过不同的电路结构实现将直流电能转换为交流电能的功能。在实际应用中,应根据具体需求选择合适的逆变器类型和电路结构。

最简单的逆变器电路

 最简单的逆变器电路:

下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法.

 

变压器的制作:

可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.

可换一下接头.这样变压器就做好了. 电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由

于管子的参数不一致有时不起振,最好接一个. 三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了. 接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.

调整完毕后就可以正常使用了. 我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.

大功率逆变器电路图分享

大功率逆变器电路图分享

以下是几种大功率逆变器电路图的分享,包括400W、1000W以及1500W的逆变器电路。

400W逆变器电路

电路图

电路说明

该电路利用TL494组成大功率稳压逆变器,输出功率可达400W。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOSFET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。第1、2脚构成稳压取样、误差放大系统,通过取样电压与基准电压的比较,控制输出电压的稳定。第4脚外接元件设定死区时间,第5、6脚外接元件设定振荡器三角波频率。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,通过开关S控制TL494的启动/停止,作为逆变器的控制开关。1000W逆变器电路

电路图

电路说明

该功率逆变器电路提供非常稳定的“方波”输出电压,操作频率由电位器决定,通常设置为60Hz。可以使用各种“现成的”变压器,或者自定义以获得最佳效果。额外的MOS管可以并联以获得更高的功率。建议在电源线上安装“保险丝”并始终连接“负载”,同时接通电源。保险丝额定电压为32伏,每100瓦输出应大约为10安培。电源引线必须足够粗,以处理此高电流消耗。适当的散热器应该用在MOS管上。1000W白金机逆变器电路

电路图

电路说明

该逆变器电路由晶体管V、变压器T的N1、N2绕组和电容器C构成变压器耦合LC振荡电路。电位器RP和电阻R为振荡管提供偏置电流。元器件选择方面,V选用3DD59A,R用1/4W的普通电阻,C选用0.22μF/50V的电容。变压器需自制,N1、N2绕组用0.9mm的漆包线,N3绕组用0.67mm的漆包线。安装无误后,通电调节RP可以控制电路的输出功率。若电路不起振,可能是反馈绕组极性问题,可以尝试将绕组N1或N2反接后再试。1500W大功率方波逆变器电路

电路图

电路说明

该电路为1500W大功率方波逆变器,适用于需要高功率输出的场合。电路中的MOS管等元件需要承受较大的电流和电压,因此选择时需注意其参数是否满足要求。电路中可能包含复杂的驱动和保护电路,以确保逆变器的稳定运行和安全性。

MOS管推荐:对于上述大功率逆变器电路,推荐使用优质的国产MOS管,如KIA半导体的产品。KIA半导体拥有丰富的MOS场效应管产品系列,具备出色性能以及价格优势,适合低功率至高功率应用。具体型号和参数可根据实际需求进行选择。

以上是大功率逆变器电路图的分享,包括400W、1000W以及1500W的逆变器电路。在实际应用中,需要根据具体需求和条件选择合适的电路和元件,并进行正确的安装和调试。同时,也需要注意逆变器的安全性和稳定性,以确保其正常运行和延长使用寿命。

逆变器单片机电路图和详细原理

逆变器单片机电路的核心是通过单片机产生PWM信号控制开关器件,将直流电转换为交流电。电路主要包括电源、控制、驱动、开关和滤波五个部分。

1. 电源部分

采用稳压芯片(如LM7805或LM2596)将输入的12V/24V直流电转换为单片机所需的5V/3.3V稳定电压,并搭配电容进行滤波处理。

2. 单片机控制部分

核心芯片常用STM32或51系列单片机,通过内部定时器生成PWM信号(频率通常为20kHz-100kHz),并采集输出电压/电流反馈信号实现闭环控制。外部需连接16MHz晶振和复位电路。

3. 驱动电路部分

采用光耦隔离(如TLP250)或专用驱动芯片(如IR2110)放大单片机输出的PWM信号,提供15-20V驱动电压以确保开关器件可靠导通。

4. 开关器件部分

常用MOSFET(IRF540N)IGBT(FF200R12KT4)组成H桥拓扑,开关频率与PWM信号同步,耐压值需高于输入电压的1.5倍(例如12V输入选用30V以上器件)。

5. 输出滤波部分

采用LC滤波电路(电感值2-10mH,电容值1-10μF),将高频脉冲波形滤波成50Hz正弦交流电,总谐波失真(THD)需控制在<5%以内。

典型电路参数示例

- 输入电压:12V/24V DC

- 输出功率:500W-2000W

- 输出波形:修正正弦波/纯正弦波

- 效率:85%-93%

- 保护功能:过流、过压、过热保护

电路设计需注意散热设计(加装散热片)和电磁兼容(添加屏蔽和滤波措施)。实际电路图可参考立创EDA平台的开源项目或ST/Infineon等厂商的应用笔记(如AN1089)。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言