发布时间:2025-09-15 11:10:10 人气:
组串式逆变器通讯模块
储能系统-逆变器常用方案汇总:集中式、分布式、组串式
储能逆变器在储能系统中扮演着至关重要的角色,它能够实现电能的转换、电压的匹配与调节,以及并网与离网操作。目前,常见的储能逆变器方案主要包括集中式、分布式和组串式三种。
一、集中式储能逆变器方案
集中式储能逆变器方案以其大容量、高效率、低成本和高可靠性等优点,在大型电力系统中得到了广泛应用。
大容量:集中式储能设施建设规模较大,能够满足大规模电力系统的需求。高效率:采用先进的储能技术和设备,实现能源的高效存储和释放。低成本:集中式储能设施建设成本相对较低,有利于降低整个电力系统的运行成本。高可靠性:集中式逆变器能够有效地缓解电力系统的压力,提高电力系统的稳定性和可靠性。电网友好性:集中式逆变器具有较好的电网调节性,适用于大型电站项目,如大型厂房、荒漠电站、大型地面光伏电站等。减少线路损耗:集中式储能电站的规模较大,有助于减少线路损耗和投资压力。二、分布式逆变器方案
分布式逆变器方案以其灵活性和可扩展性、精准配置、快速精准定位故障、电池寿命长、降低运维成本等优点,在工商业用户侧、零碳园区等应用场景中表现出色。
灵活性和可扩展性:分布式储能技术采用模块化设计,每个储能单元都具备独立控制和管理功能,适用于多种应用场景。精准配置:能够根据不同的能源产生和消耗模式进行精准配置,提高整个系统的效率和可靠性。快速精准定位故障:系统发生故障时,可以快速精准定位到单簇,降低系统停机的风险。电池寿命长:每个电池簇单独控制充放电和热管理,避免环流影响,均温性好,电池寿命长。降低运维成本:模块化设计使得运输、安装快捷,扩容灵活,大大降低了运维成本和难度。适应复杂地形:对于复杂的地形和分散的能源布局具有良好的适应性。响应速度快:分布式控制的响应速度更快,更能满足实际调度响应需求。功率均衡效果好:有利于储能电站可持续长周期运行,能有效减小储能单元过充或过放的次数。三、组串式逆变器方案
组串式逆变器方案是一种新型的储能系统架构,通过将电池串联形成电池簇,然后每个电池簇单独通过逆变器与电网交互,实现了簇级管理。这种设计有助于提升系统寿命,提高全寿命周期放电容量。
一簇一管理设计:每个逆变器与单体电池簇一对一连接,实现控制和管理。这样做的好处是每一簇出口电压只对应于一个DC/AC模块,通过逆变后的电压由直流转换成交流电压,并入同一个交流母线,再通过升、降压变接入到主电网。可用容量保证:电池簇之间在直流侧是隔离的,避免了直流母线并网结构中的偏流和环流现象,从而保证了储能系统的可用容量。系统运行寿命延长:电池簇在直流侧彼此隔离和独立,即使某一簇的直流电压发生较大差异,也只是影响该簇的效率,不会引起环流和偏流现象,从而延长了系统的运行寿命。便捷维护:组串式储能系统的拓扑结构使得电池簇之间彼此解耦,单一电池簇出现故障时,不影响整个系统的运行,便于维护和保养。综上所述,集中式、分布式和组串式逆变器方案各有其特点和优势,适用于不同的应用场景和需求。在选择储能系统逆变器方案时,需要根据具体的应用场景、系统规模、成本预算等因素进行综合考虑,以选择最适合的方案。
一文读懂:微型逆变器与组串式逆变器的区别
一文读懂:微型逆变器与组串式逆变器的区别
光伏并网逆变器作为光伏系统中的核心器件,其主要作用是将光伏组件产生的直流电转换为满足电网要求的交流电。在分布式光伏领域,微型逆变器和组串式逆变器是两种常见的逆变器类型,它们之间存在显著的差异。
一、功率范围与MPPT能力
微型逆变器:一般功率小于4kW,能够对每一块或多块光伏组件进行最大功率点跟踪(MPPT),经过逆变后并入交流电网,对每块光伏组件的输出功率进行精细化调节及监控。组串式逆变器:功率范围一般在1.5kW-500kW,可以对一串或多串光伏组件进行单独的最大功率点跟踪。二、拓补结构与电路设计
微型逆变器:输入设计为单组件独立或组件并联输入结构,这种设计使得每块光伏组件都能独立工作,互不干扰。组串式逆变器:输入设计为多组件串联输入结构,即多个光伏组件串联后接入逆变器。三、运行电压
微型逆变器系统:光伏组件以并联方式连接,系统运行时,组件之间无电压叠加,直流电压不超过120V,安全性更高。组串式逆变器系统:为串联电路,光伏组件以串列方式排列,逆变器与每一个“组串”进行串联。系统运行时,整串线路电压累计一般可以达到600V~1000V。四、系统综合效率
微型逆变器:每块组件都有独立的MPPT,可以实现对每块光伏组件的独立追踪,精确追踪到功率最大输出点,杜绝“短板效应”,因此在阴影遮挡或组件个体差异时,系统效率更高。组串式逆变器:每个MPPT接入单个或多个“组串”,若单块组件受到朝向不同、阴影遮挡等影响,将会影响整串组件的发电情况,系统效率相对较低。五、运维方式
微型逆变器:可以实现对每块组件的控制,即组件级控制,通过智能运维系统,可以查看每一块组件的位置及发电情况等信息,运维精度更高,能更快、更精准地定位故障问题。组串式逆变器:对整串组件进行控制,即组串级控制,运维时只可看到整串组件的发电情况等信息,运维精度相对较低。六、安装位置与灵活性
微型逆变器:采用模块化设计,自身体积小且重量轻,可以直接安装在光伏支架上,即插即用,基本不独立占用安装空间,且可根据实际需求选择逆变器数量,实现灵活扩容。组串式逆变器:一般就近安装在某一串组件的下方,采用固定支架或抱箍式安装将设备固定在立柱上,或者安装在临近的墙面上,安装位置相对固定,扩容时需要考虑更多因素。七、小结
微型逆变器和组串式逆变器各有其优势和适用场景。组串式逆变器因具备成熟可靠的技术及低成本优势,成为了分布式光伏市场的主要选择。而微型逆变器在技术进步的加持下,其单瓦成本正在不断下降,且随着业内对光伏电站的安全性、系统效率以及智能化运维等方面提出更高的要求,微型逆变器将会得到更多的应用。在选择逆变器时,应因地制宜,根据具体需求和场景选择合适的逆变器类型。
组串式逆变器是什么
组串式逆变器是一种用于光伏电站的电力转换设备。以下是关于组串式逆变器的详细介绍:
模块化设计:组串式逆变器采用多个模块化单元组合而成,每个单元都可以独立工作,并在高功率需求时并行运行。这种设计使其能够适应大规模光伏电站的需求,通过灵活的扩展来实现高效的电力转换。
适用于分布式光伏电站:由于其结构紧凑、易于安装和维护,组串式逆变器在分布式光伏电站中得到广泛应用。它能够连接多个光伏组件的串联阵列,将产生的直流电转换为适合电网接入的交流电。
高度可靠性和稳定性:组串式逆变器具有高度的可靠性和稳定性,能够保证光伏电站的长期稳定运行,这对于光伏电站的运营和维护至关重要。
优秀的性能表现:组串式逆变器具有较高的转换效率和较低的故障率,能够有效地提高光伏电站的整体运行效率。同时,它还能够实时监测光伏组件的工作状态,并通过智能控制系统进行自动调整和优化,以确保光伏电站的高效运行。
总的来说,组串式逆变器是光伏电站中不可或缺的电力转换设备,它通过转换直流电为交流电,为光伏电站的电力输出和电网接入提供了重要的支持。
组串式逆变器和集中式逆变器的区别
组串式逆变器和集中式逆变器的区别
组串式逆变器和集中式逆变器是光伏电站中两种常见的逆变器配置方案,它们在结构、工作原理、应用场景以及性能特点等方面存在显著差异。
一、结构和工作原理
组串式逆变器:基于智能模块化的概念,将光伏方阵中的每个光伏组串连接至一台指定的逆变器直流输入端。多个光伏组串和逆变器模块化的组合在一起,所有逆变器在交流输出端并联,完成将直流电转换为交流电的过程。
集中式逆变器:多路并行的光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电。其系统集成度高,功率密度大。
二、应用场景
组串式逆变器:由于其不受组串间光伏电池组件性能差异和局部遮影的影响,可以处理不同朝向和不同型号的光伏组件,因此适用于各种复杂地形和光照条件的光伏电站,包括地面光伏电站、屋顶光伏电站等。同时,其结构简单,安装简便,设备小、占地少,配置灵活,也使其在各种规模的光伏电站中得到广泛应用。
集中式逆变器:由于其系统集成度高、成本低、谐波含量少等特点,更适用于地形平坦、规模较大的地面光伏电站。然而,对于复杂地形或光照条件不均的光伏电站,集中式逆变器可能无法充分发挥其性能优势。
三、性能特点
组串式逆变器:
发电效率高:通过多路MPPT的功率跟踪,可以最大限度地减少阵列失配损失,提高发电效率。
可靠性高:具有强大的保护功能,能规避某一串直流短路能量倒灌的问题,没有集中式逆变器难以解决的直流故障问题。
安全性高:设备小、占地少,安装简便,降低了运维难度和风险。
易安装维护:模块化设计使得安装和维护更加便捷。
集中式逆变器:
成本低:由于系统集成度高,可以降低设备成本和安装成本。
电能质量高:谐波含量少,直流分量少,电能质量高。
但存在局限性:受不同光伏组串输出电压、电流不完全匹配的影响,逆变过程的效率可能会降低,电性能也可能下降。同时,整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。
四、展示
以下是组串式逆变器和集中式逆变器的示意图,以便更直观地了解它们的结构差异:
综上所述,组串式逆变器和集中式逆变器在结构、工作原理、应用场景以及性能特点等方面存在显著差异。在选择逆变器配置方案时,需要根据光伏电站的具体情况和需求进行综合考虑,以确保光伏电站的高效、可靠运行。
华为光伏逆变器:组串逆变器是怎么样的?
华为的组串式逆变器采用了模块化设计,这意味着每个光伏串都有一个对应的逆变器,这使得直流端具有了最大功率跟踪功能。交流端则是并联并网,这种设计的优点在于它不受组串间模块差异和阴影遮挡的影响,同时还能减少光伏电池组件的最佳工作点与逆变器不匹配的情况,从而最大限度地增加发电量。
华为组串式逆变器的MPPT电压范围较宽,一般在250-800V之间,这使得组件配置更加灵活。即使是在阴雨天或雾气多的地区,也能延长发电时间,提高发电效率。
此外,华为组串式并网逆变器的体积小巧,重量轻便,因此搬运和安装都非常便捷。不需要专业工具和设备,也不需要专门的配电室,这在各种应用中都能够简化施工过程,减少占地面积。
这种逆变器采用了直流线路连接的方式,不需要直流汇流箱和直流配电柜等额外设备,进一步简化了系统结构。
华为组串式逆变器还具有低自耗电、故障影响小、更换维护方便等优势,使得整个系统的运行更加高效、稳定。
综上所述,华为的组串式逆变器在设计上充分考虑了实际应用中的各种需求,不仅提高了发电效率,还极大地简化了安装和维护过程。
干货建议收藏集中式、组串式、微型逆变器的区别
集中式、组串式、微型逆变器的区别
逆变器作为光伏发电系统的核心设备,在将光伏组件产生的可变直流电压转换为市电频率交流电的过程中起着至关重要的作用。目前,市面上常见的逆变器主要分为集中式逆变器、组串式逆变器和微型逆变器。以下是对这三类逆变器的对比分析:
一、集中式逆变器
集中式逆变器是将若干个并行的光伏组串连接到同一台集中逆变器的直流输入端,一般用于大于10KW的大型光伏发电站系统中,如大型厂房、荒漠电站、地面电站等。其主要优势包括:
逆变器数量少,便于管理:集中式逆变器数量相对较少,使得整个系统的管理更为简便。逆变器元器件数量少,可靠性高:由于元器件数量较少,集中式逆变器的可靠性相对较高。电能质量高:谐波含量少,直流分量少,使得输出的电能质量非常高。成本低:逆变器集成度高,功率密度大,有助于降低成本。保护功能齐全:逆变器具备各种保护功能,确保电站的安全性。电网调节性好:具有功率因素调节功能和低电压穿越功能,有利于电网的稳定运行。然而,集中式逆变器也存在一些缺点:
直流汇流箱故障率较高:直流汇流箱作为集中式逆变器的重要组成部分,其故障可能会影响整个系统。MPPT电压范围窄:一般为450-875V,组件配置不够灵活,影响发电效率。安装部署困难:需要专用的机房和设备,安装部署相对复杂。系统维护复杂:逆变器自身耗电以及机房通风散热耗电大,增加了系统维护的复杂性。发电效率受限:由于逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,当组件发生故障或被阴影遮挡时,会影响整个系统的发电效率。无冗余能力:一旦集中式逆变器发生故障停机,整个系统将停止发电。二、组串式逆变器
组串式逆变器是基于模块化概念设计的,每个光伏组串(1-5kW)通过一个逆变器进行转换,已成为现在国际市场上最流行的逆变器。它主要用于中小型屋顶光伏发电系统和小型地面电站。组串式逆变器的主要优势包括:
不受阴影遮挡影响:每个光伏串对应一个逆变器,减少了阴影遮挡对发电量的影响。MPPT电压范围宽:一般为500-1500V,组件配置更为灵活,发电时间长。安装方便:体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备。维护简单:具有自耗电低、故障影响小、更换维护方便等优势。但组串式逆变器也存在一些缺点:
可靠性稍差:电子元器件较多,设计和制造难度大,可靠性相对较低。不适合高海拔地区:功率器件电气间隙小,户外型安装容易导致外壳和散热片老化。电气安全性稍差:不带隔离变压器设计,直流分量大,对电网影响大。总谐波高:多个逆变器并联时,总谐波会迭加,较难抑制。系统监控难度大:逆变器数量多,总故障率会升高,增加了系统监控的难度。功能实现较难:多机并联时,零电压穿越功能、无功调节、有功调节等功能实现较难。三、微型逆变器
微型逆变器能够在面板级实现最大功率点跟踪,具有超越中央逆变器的优势。它主要用于屋顶家用市场,配置灵活,可根据用户财力安装不同大小的光伏电池。微型逆变器的主要优点包括:
高可用性:当一个甚至多个模块出现故障时,系统仍可继续向电网提供电能。配置灵活:可根据用户需求进行灵活配置。降低阴影影响:有效降低局部遮档造成的阴影对输出功率的影响。更安全:无高压电,安装简单快捷,维护安装成本低廉。提高发电量:由于对单块组件的最大功率点进行跟踪,可大大提高光伏系统的发电量。然而,微型逆变器也存在一些缺点:
应用受限:一般适合屋顶家用市场,应用场合受到限制。成本较高:相对于集中式逆变器和组串式逆变器,微型逆变器的成本更高。总结
通过对比分析可以看出,集中式逆变器、组串式逆变器和微型逆变器各有优缺点。集中式逆变器适用于大型光伏发电站系统,具有成本低、电能质量高等优势,但存在直流汇流箱故障率高、MPPT电压范围窄等缺点。组串式逆变器适用于中小型光伏发电系统,具有安装方便、维护简单等优势,但可靠性稍差、总谐波高等缺点也不容忽视。微型逆变器则适用于屋顶家用市场,具有高可用性、配置灵活等优势,但成本较高、应用受限等缺点也限制了其应用范围。在实际应用中,应根据具体需求和场景选择合适的逆变器类型。
一种应用于200kW+组串式光伏逆变器的IGBT模块方案
一种应用于200kW+组串式光伏逆变器的IGBT模块方案
针对200kW+组串式光伏逆变器,推荐采用基于ANPC(Active Neutral-Point Clamped)拓扑的IGBT模块方案,特别是英飞凌推出的F3L400R10W3S7F_B11模块。以下是对该方案的详细阐述:
一、拓扑结构选择
在1500Vdc系统光伏逆变器中,NPC1、NPC2和ANPC是三种主流的三电平拓扑结构。其中,ANPC拓扑由于所有器件都是低耐压器件,且可以通过优化换流回路以及损耗在不同器件上的均分来提高效率,因此被认为是最好的解决方案之一。特别是基于950V晶圆的NPC1和ANPC拓扑,更是被认为是当前的最佳选择。
二、ANPC模块的优势
与NPC1拓扑相比,ANPC拓扑在功率密度、损耗分布以及调制灵活性方面具有以下优势:
功率密度提高:ANPC拓扑通过增加两个IGBT(T5,T6),使得钳位二极管(D5,D6)的规格可以明显变小,从而有利于SiC二极管的应用。较小的SiC二极管可以降低成本,并提高系统的整体功率密度。损耗降低:ANPC的调制策略非常灵活,可以优化损耗在各管子上的分布。特别是在有功和无功情况下,都可以通过短换流回路换流,从而解决了长换流回路时由于杂散电感较大导致的器件电压应力过大的问题。调制灵活性:ANPC拓扑的调制策略多样,可以根据实际应用场景进行优化选择。例如,在光伏逆变器中,可以根据功率因素和输出电压的变化来调整调制策略,以实现更高的效率和更低的损耗。三、SiC二极管的应用
SiC二极管具有反向恢复电流小、损耗低、稳定性好等优点,可以显著提高逆变器的运行效率。在ANPC拓扑中,钳位二极管(D5,D6)采用SiC二极管可以进一步降低模块的损耗。与Si二极管相比,SiC二极管在反向恢复瞬间产生的电流非常小,因此拥有可以忽略不计的反向恢复损耗。同时,SiC二极管还可以降低反向恢复带来的噪音,起到降噪的效果。
四、F3L400R10W3S7F_B11模块的特点
F3L400R10W3S7F_B11是英飞凌推出的一款基于ANPC拓扑的功率模块,具有以下特点:
封装形式:采用EASY 3B封装,便于集成和安装。晶圆配比:内管(T2,T3)采用慢速低饱和压降的晶圆L7,外管(T1,T4)以及钳位管(T5,T6)采用高速晶圆S7,通过快慢速晶圆搭配的方式降低模块的损耗。调制策略:推荐采用四块两慢的调制方式,并可根据实际应用场景进行优化选择。在低电压穿越(LVRT)时,推荐采用改进的调制策略,以降低钳位二极管的电流和热应力。五、调制策略推荐
为了充分发挥F3L400R10W3S7F_B11模块的优势,推荐采用以下调制策略:
四块两慢调制方式:在调制波上半周时,拓扑下半部分所有的管子(T3,T4,T6)都是关断状态;反之,负半周时,拓扑上半部分的所有管子(T1,T2,T5)都处于关断状态。内管(T2,T3)为工频切换,外管(T1,T4)以及钳位管(T5,T6)为高频动作。改进的调制策略:在正常工况下,可以自由选择四块两慢调制方式或改进的调制方式。但在低电压穿越(LVRT)时,强烈推荐采用改进的调制方式,以降低钳位二极管的电流和热应力。改进的调制方式下,T5和T6在整个工频周期内都是高频动作,形成两个零电平回路,有利于损耗在不同器件上的分布。六、结论
综上所述,基于ANPC拓扑的F3L400R10W3S7F_B11模块方案是应用于200kW+组串式光伏逆变器的理想选择。该方案通过优化拓扑结构、采用SiC二极管以及合理的调制策略,可以显著提高逆变器的运行效率和可靠性。同时,该方案还具有易于集成和安装、成本低廉等优点,适用于大规模光伏电站的建设和运维。
以下是相关展示:
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467