发布时间:2025-09-13 23:00:11 人气:
逆变器输出是隔离电源吗
UPS(不间断电源)详解
UPS,即不间断电源,是一种含有储能装置,以整流器、逆变器为主要组成部分的电源设备。它主要为变电站内的监控系统、自动化仪表、远方通信系统等关键设备提供恒压恒频的不间断电源。
一、UPS的主要作用
作为重要设备的交流供电电源:UPS能够防止市电突然断电而影响设备的正常工作,从而避免设备受损。改善电源质量:UPS能够消除市电中的电涌、瞬间高/低电压、电线噪声和频率偏移等“电源污染”,为计算机等设备提供高质量的电源。二、UPS的分类
UPS系统主要有三种类型:
后备式:具备自动稳压、断电保护等功能,转换时间约为10ms,逆变输出的交流电是方波。这种UPS结构简单,价格便宜。互动式:具有滤波功能,抗式电干扰能力强,转换时间小于4ms,逆变输出为模拟正弦波。其价格远低于在线式UPS。在线式:结构较复杂,性能完善,能够持续不中断地输出纯净正弦波交流电,能够解决尖峰、浪涌、频率漂移等全部的电源问题。价格高,通常应用在关键计算机和网络设备等对电力要求苛刻的环境中。三、UPS的结构
变电站内UPS系统一般由电力UPS主机、旁路稳压柜、输出馈线柜等三部分组成(小功率时也可三合一)。其中,整流器、逆变器、蓄电池等是关键部件。
整流器:将交流电(AC)变成直流电(DC),经滤波后供给逆变器,并给蓄电池提供充电电压。逆变器:将直流电(DC)转化为交流电(AC),供给负载使用。蓄电池:作为储存电能的装置,在市电失电时,将直流电逆变后,为负载提供不间断电源。其容量大小决定了维持放电(供电)的时间。此外,静态开关、隔离变压器、稳压器等也是UPS系统中的重要组成部分。
四、UPS的运行模式
UPS有四种运行模式:
正常操作模式:在正常交流电源供应下,整流器将交流电转换为直流电,消除市电中的“电源污染”,并同时对蓄电池充电。再供给逆变器将直流电转换为交流电,提供更稳定的电源给负载。停电模式:当交流电源发生异常或整流器、电抗器故障时,蓄电池组提供直流电给逆变器,使交流输出不会有中断,进而达到保护负载的作用。备用电源模式:当逆变器发生异常状况时,如逆变器保险丝熔断、短路等故障,逆变器会自动切断以防止损坏。若此时旁路交流电源正常,静态开关会将电源供应转为由旁路备用电源输出给负载使用。维护旁路模式:当UPS要进行维修或更换电池且负载供电又不能中断时,可以先切断逆变器开关,然后激活维修旁路开关,再将整流器和旁路开关切断。此时,交流电源经由维护旁路开关继续供应交流电给负载,维护人员可以安全地对UPS进行维护。五、电力系统UPS的一些要求
高可靠性:由于监控系统和远方通信系统对变电站十分重要,因此作为电源的UPS系统的可靠性也有非常高的要求。适合单相负载:电力系统专用的UPS电源大多数要求为三相/单相输入、单相输出的中小型功率UPS,容量一般在60kVA范围之内。无间断切换:旁路静态切换开关应具有自动、手动两种工作方式,实现无间断切换。直接使用直流系统:由于变电站有220V或110V直流系统,并有直流充电屏给蓄电池充电,所以电力专用UPS自身不带蓄电池,直接使用直流系统作为UPS的直流输入,并且不需要具备充电功能。反灌杂讯抑制:电力专用UPS的直流输入端一般要求装有反灌杂讯抑制器,如逆止二极管等,使UPS对直流母线的影响尽量小。足够的供电容量和维持时间:UPS电源在带满全部设备后,应留有40%以上的供电容量。UPS在交流电失电后,不间断供电维持时间不小于60分钟。综上所述,UPS作为不间断电源设备,在电力系统中发挥着至关重要的作用。了解UPS的作用、分类、结构、运行模式和电力系统要求等方面的知识,对于保障电力系统的稳定运行具有重要意义。
光伏系统逆变器的逆变原理
目前我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载
供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实
现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市场。另外,光伏发电最终将实现并网运行,这就必须采用成熟的市场模式,今后交流光伏,发电系统必将成为光伏发电的主流。
光伏发电系统对逆变电源的要求
采用交流电力输出的光伏发电系统,由光伏阵列、充放电控制器、蓄电池和逆变器四部分组成(并网发电系统一般可省去蓄电池),而逆变器是关键部件。光伏发电系统对逆变器要求较高:
1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。
2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。
3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。
4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改
变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。推挽电路和全桥电路的输出都必须加升压变压器,由于升压变压器体积大,效率低,价格也较贵,随着电力电子技术和微电子技术的发展,采用高频升压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升压电路采用推挽结构,但工作频率均在20KHz以上,升压变压器采用高频磁芯材料,因而体积小、重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变。采用该电路结构,使逆变器功率大大提高,逆变器的空载损耗也相应降低,效率得到提高,该电路的缺点是电路复杂,可靠性比上述两种电路低。逆变电路的控制电路
上述几种逆变器的主电路均需要有控制电路来实现,一般有方波和正弱波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。、1.方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。
2.正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、上桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。
逆变器主电路功率器件的选择逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。
逆变器12v转220v电压安全吗
逆变器将12V转换为220V的过程是安全的。这是因为逆变器输出的电压是经过隔离处理的,这意味着输入和输出之间有良好的电气隔离,不会因为输入电压的存在而影响到输出电压的安全性。
只要在使用过程中遵循正确的安全措施,就不会发生危险。具体来说,就是避免同时接触逆变器输出的两根导线,因为即使输出电压是220V,只要不是同时触碰两根线,也不会引发电击事故。这种设计大大降低了使用中的风险。
值得注意的是,虽然逆变器的输出是隔离的,但这并不意味着可以完全忽视安全操作。比如,在安装或维护逆变器时,应确保电源已经断开,以避免意外触电。同样,对于需要连接到逆变器的设备,也应当确保它们符合安全标准,以防止任何可能的故障。
此外,使用逆变器时,还应定期检查其连接线和插头,确保没有损坏或松动的情况。这样可以进一步保障使用的安全性,避免因线路问题引发的隐患。
总之,正确使用逆变器并遵循相关安全规范,可以确保其输出的220V电压是安全的。只要避免同时触碰两根输出线,就能有效防止电击事故的发生。
逆变器正弦波和修正波区别
逆变器正弦波和修正波的区别:
1、修正波逆变器一般采用非隔离耦合电路,而正弦波逆变器采用隔离耦合电路设计。其价格也相差很多。修正波开关式逆变电源,不仅省去笨重的工频变压器,而且逆变效率也大大提高效率90%。
2、修正波式逆变电源采用PWM脉宽调制方式生成修正波输出,在逆变过程中,由于使用了专用的智能电路及大功率场效应管,大大降低了系统的功率损耗。并增加了软启动功能,有效保证了逆变器的可靠性。如果对用电质量要求不是很高,而它能够满足大部分用电设备的需求,但它还是存在20%的谐波失真,在运行精密设备时会出现问题,也会对通讯设备造成高频干扰。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467