Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

组串逆变器安装后图片

发布时间:2025-09-10 04:40:22 人气:



组串逆变器安装后

光伏逆变器、储能逆变器、储能变流器、PCS的区别与联系

在新能源领域,光伏逆变器、储能逆变器、储能变流器(PCS)等术语经常被提及,但它们各自的功能和应用场景却有所不同。以下是对这些术语的详细解释和区分:

一、光伏逆变器

定义:光伏逆变器是将光伏组件产生的直流电转换为交流电的装置。作用:主要作用是通过光伏设备将太阳能转变的直流电逆变为交流电,可供负载使用、并入电网或存储起来。分类:根据应用规模和输出功率,光伏逆变器可分为集中式、组串式和微型逆变器。集中式逆变器适用于大型地面电站和分布式工商业光伏,输出功率一般大于250KW;组串式逆变器同样适用于大型地面电站和分布式工商业光伏(输出功率小于250KW,三相)以及户用光伏(输出功率小于等于10KW,单相);微型逆变器则主要适用于分布式光伏(输出功率小于等于5KW,三相)和户用光伏(输出功率小于等于2KW,单相)。

二、储能逆变器

定义:储能逆变器是专门用于储能系统中的逆变器,它能够实现电能的存储和释放。作用:在光伏发电产生的直流电需要存储到蓄电池中时,储能逆变器将直流电转换为适合蓄电池充电的交流电(或直流电,取决于蓄电池类型)。当需要用到这部分电能时,储能逆变器再将蓄电池中的电能转换为交流电供负载使用或并入电网。特点:储能逆变器通常具有双向转换功能,即能够实现直流电和交流电的相互转换。

三、储能变流器(PCS)

定义:储能变流器(Power Conversion System,简称PCS)是储能系统中的核心设备之一,它控制蓄电池的充电和放电过程,进行交直流电的转换。作用:储能变流器由DC/AC双向变流器、控制单元等构成,主要作用是控制蓄电池的充放电过程,实现交直流电的相互转换。在充电过程中,它将交流电转换为直流电对蓄电池进行充电;在放电过程中,它将蓄电池中的直流电转换为交流电供负载使用或并入电网。分类:根据应用场景和输出功率的不同,储能变流器可分为大储、工商业储和户储等类型。大储主要适用于地面电站和独立储能电站,输出功率一般大于250KW;工商业储和户储则分别适用于不同规模的工商业和户用储能系统。此外,根据耦合方案的不同,储能变流器还可分为传统储能变流器(主要使用交流耦合方案)和Hybrid(主要采用直流耦合方案)等类型。

四、区别与联系

区别

光伏逆变器主要用于将光伏组件产生的直流电转换为交流电,供负载使用、并入电网或存储起来。

储能逆变器则专门用于储能系统中,实现电能的存储和释放。

储能变流器(PCS)是储能系统中的核心设备之一,它控制蓄电池的充电和放电过程,进行交直流电的转换。

联系

在光伏储能系统中,光伏逆变器、储能逆变器和储能变流器(PCS)是相互关联的。光伏逆变器将光伏组件产生的直流电转换为交流电后,可以通过储能逆变器将部分电能存储到蓄电池中;当需要用到这部分电能时,储能变流器(PCS)再将蓄电池中的电能转换为交流电供负载使用或并入电网。

此外,随着技术的发展和市场的变化,这些设备的功能和应用场景也在不断拓展和融合。例如,一些新型的储能逆变器已经具备了光伏逆变器和储能变流器(PCS)的部分功能,可以实现更加灵活和高效的电能转换和管理。

五、展示

通过以上解释和展示,相信您对光伏逆变器、储能逆变器、储能变流器(PCS)等术语有了更加清晰的认识和理解。在实际应用中,这些设备共同构成了新能源系统的重要组成部分,为实现能源的清洁、高效利用提供了有力支持。

组串式逆变器和集中式逆变器的区别

组串式逆变器和集中式逆变器的区别

组串式逆变器和集中式逆变器是光伏电站中两种常见的逆变器配置方案,它们在结构、工作原理、应用场景以及性能特点等方面存在显著差异。

一、结构和工作原理

组串式逆变器:基于智能模块化的概念,将光伏方阵中的每个光伏组串连接至一台指定的逆变器直流输入端。多个光伏组串和逆变器模块化的组合在一起,所有逆变器在交流输出端并联,完成将直流电转换为交流电的过程。

集中式逆变器:多路并行的光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电。其系统集成度高,功率密度大。

二、应用场景

组串式逆变器:由于其不受组串间光伏电池组件性能差异和局部遮影的影响,可以处理不同朝向和不同型号的光伏组件,因此适用于各种复杂地形和光照条件的光伏电站,包括地面光伏电站、屋顶光伏电站等。同时,其结构简单,安装简便,设备小、占地少,配置灵活,也使其在各种规模的光伏电站中得到广泛应用。

集中式逆变器:由于其系统集成度高、成本低、谐波含量少等特点,更适用于地形平坦、规模较大的地面光伏电站。然而,对于复杂地形或光照条件不均的光伏电站,集中式逆变器可能无法充分发挥其性能优势。

三、性能特点

组串式逆变器

发电效率高:通过多路MPPT的功率跟踪,可以最大限度地减少阵列失配损失,提高发电效率。

可靠性高:具有强大的保护功能,能规避某一串直流短路能量倒灌的问题,没有集中式逆变器难以解决的直流故障问题。

安全性高:设备小、占地少,安装简便,降低了运维难度和风险。

易安装维护:模块化设计使得安装和维护更加便捷。

集中式逆变器

成本低:由于系统集成度高,可以降低设备成本和安装成本。

电能质量高:谐波含量少,直流分量少,电能质量高。

但存在局限性:受不同光伏组串输出电压、电流不完全匹配的影响,逆变过程的效率可能会降低,电性能也可能下降。同时,整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。

四、展示

以下是组串式逆变器和集中式逆变器的示意图,以便更直观地了解它们的结构差异:

综上所述,组串式逆变器和集中式逆变器在结构、工作原理、应用场景以及性能特点等方面存在显著差异。在选择逆变器配置方案时,需要根据光伏电站的具体情况和需求进行综合考虑,以确保光伏电站的高效、可靠运行。

华为光伏逆变器:组串逆变器是怎么样的?

华为的组串式逆变器采用了模块化设计,这意味着每个光伏串都有一个对应的逆变器,这使得直流端具有了最大功率跟踪功能。交流端则是并联并网,这种设计的优点在于它不受组串间模块差异和阴影遮挡的影响,同时还能减少光伏电池组件的最佳工作点与逆变器不匹配的情况,从而最大限度地增加发电量。

华为组串式逆变器的MPPT电压范围较宽,一般在250-800V之间,这使得组件配置更加灵活。即使是在阴雨天或雾气多的地区,也能延长发电时间,提高发电效率。

此外,华为组串式并网逆变器的体积小巧,重量轻便,因此搬运和安装都非常便捷。不需要专业工具和设备,也不需要专门的配电室,这在各种应用中都能够简化施工过程,减少占地面积。

这种逆变器采用了直流线路连接的方式,不需要直流汇流箱和直流配电柜等额外设备,进一步简化了系统结构。

华为组串式逆变器还具有低自耗电、故障影响小、更换维护方便等优势,使得整个系统的运行更加高效、稳定。

综上所述,华为的组串式逆变器在设计上充分考虑了实际应用中的各种需求,不仅提高了发电效率,还极大地简化了安装和维护过程。

干货建议收藏集中式、组串式、微型逆变器的区别

集中式、组串式、微型逆变器的区别

逆变器作为光伏发电系统的核心设备,在将光伏组件产生的可变直流电压转换为市电频率交流电的过程中起着至关重要的作用。目前,市面上常见的逆变器主要分为集中式逆变器、组串式逆变器和微型逆变器。以下是对这三类逆变器的对比分析:

一、集中式逆变器

集中式逆变器是将若干个并行的光伏组串连接到同一台集中逆变器的直流输入端,一般用于大于10KW的大型光伏发电站系统中,如大型厂房、荒漠电站、地面电站等。其主要优势包括:

逆变器数量少,便于管理:集中式逆变器数量相对较少,使得整个系统的管理更为简便。逆变器元器件数量少,可靠性高:由于元器件数量较少,集中式逆变器的可靠性相对较高。电能质量高:谐波含量少,直流分量少,使得输出的电能质量非常高。成本低:逆变器集成度高,功率密度大,有助于降低成本。保护功能齐全:逆变器具备各种保护功能,确保电站的安全性。电网调节性好:具有功率因素调节功能和低电压穿越功能,有利于电网的稳定运行。

然而,集中式逆变器也存在一些缺点:

直流汇流箱故障率较高:直流汇流箱作为集中式逆变器的重要组成部分,其故障可能会影响整个系统。MPPT电压范围窄:一般为450-875V,组件配置不够灵活,影响发电效率。安装部署困难:需要专用的机房和设备,安装部署相对复杂。系统维护复杂:逆变器自身耗电以及机房通风散热耗电大,增加了系统维护的复杂性。发电效率受限:由于逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,当组件发生故障或被阴影遮挡时,会影响整个系统的发电效率。无冗余能力:一旦集中式逆变器发生故障停机,整个系统将停止发电。

二、组串式逆变器

组串式逆变器是基于模块化概念设计的,每个光伏组串(1-5kW)通过一个逆变器进行转换,已成为现在国际市场上最流行的逆变器。它主要用于中小型屋顶光伏发电系统和小型地面电站。组串式逆变器的主要优势包括:

不受阴影遮挡影响:每个光伏串对应一个逆变器,减少了阴影遮挡对发电量的影响。MPPT电压范围宽:一般为500-1500V,组件配置更为灵活,发电时间长。安装方便:体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备。维护简单:具有自耗电低、故障影响小、更换维护方便等优势。

但组串式逆变器也存在一些缺点:

可靠性稍差:电子元器件较多,设计和制造难度大,可靠性相对较低。不适合高海拔地区:功率器件电气间隙小,户外型安装容易导致外壳和散热片老化。电气安全性稍差:不带隔离变压器设计,直流分量大,对电网影响大。总谐波高:多个逆变器并联时,总谐波会迭加,较难抑制。系统监控难度大:逆变器数量多,总故障率会升高,增加了系统监控的难度。功能实现较难:多机并联时,零电压穿越功能、无功调节、有功调节等功能实现较难。

三、微型逆变器

微型逆变器能够在面板级实现最大功率点跟踪,具有超越中央逆变器的优势。它主要用于屋顶家用市场,配置灵活,可根据用户财力安装不同大小的光伏电池。微型逆变器的主要优点包括:

高可用性:当一个甚至多个模块出现故障时,系统仍可继续向电网提供电能。配置灵活:可根据用户需求进行灵活配置。降低阴影影响:有效降低局部遮档造成的阴影对输出功率的影响。更安全:无高压电,安装简单快捷,维护安装成本低廉。提高发电量:由于对单块组件的最大功率点进行跟踪,可大大提高光伏系统的发电量。

然而,微型逆变器也存在一些缺点:

应用受限:一般适合屋顶家用市场,应用场合受到限制。成本较高:相对于集中式逆变器和组串式逆变器,微型逆变器的成本更高。

总结

通过对比分析可以看出,集中式逆变器、组串式逆变器和微型逆变器各有优缺点。集中式逆变器适用于大型光伏发电站系统,具有成本低、电能质量高等优势,但存在直流汇流箱故障率高、MPPT电压范围窄等缺点。组串式逆变器适用于中小型光伏发电系统,具有安装方便、维护简单等优势,但可靠性稍差、总谐波高等缺点也不容忽视。微型逆变器则适用于屋顶家用市场,具有高可用性、配置灵活等优势,但成本较高、应用受限等缺点也限制了其应用范围。在实际应用中,应根据具体需求和场景选择合适的逆变器类型。

一文读懂:微型逆变器与组串式逆变器的区别

一文读懂:微型逆变器与组串式逆变器的区别

光伏并网逆变器作为光伏系统中的核心器件,其主要作用是将光伏组件产生的直流电转换为满足电网要求的交流电。在分布式光伏领域,微型逆变器和组串式逆变器是两种常见的逆变器类型,它们之间存在显著的差异。

一、功率范围与MPPT能力

微型逆变器:一般功率小于4kW,能够对每一块或多块光伏组件进行最大功率点跟踪(MPPT),经过逆变后并入交流电网,对每块光伏组件的输出功率进行精细化调节及监控。组串式逆变器:功率范围一般在1.5kW-500kW,可以对一串或多串光伏组件进行单独的最大功率点跟踪。

二、拓补结构与电路设计

微型逆变器:输入设计为单组件独立或组件并联输入结构,这种设计使得每块光伏组件都能独立工作,互不干扰。组串式逆变器:输入设计为多组件串联输入结构,即多个光伏组件串联后接入逆变器。

三、运行电压

微型逆变器系统:光伏组件以并联方式连接,系统运行时,组件之间无电压叠加,直流电压不超过120V,安全性更高。组串式逆变器系统:为串联电路,光伏组件以串列方式排列,逆变器与每一个“组串”进行串联。系统运行时,整串线路电压累计一般可以达到600V~1000V。

四、系统综合效率

微型逆变器:每块组件都有独立的MPPT,可以实现对每块光伏组件的独立追踪,精确追踪到功率最大输出点,杜绝“短板效应”,因此在阴影遮挡或组件个体差异时,系统效率更高。组串式逆变器:每个MPPT接入单个或多个“组串”,若单块组件受到朝向不同、阴影遮挡等影响,将会影响整串组件的发电情况,系统效率相对较低。

五、运维方式

微型逆变器:可以实现对每块组件的控制,即组件级控制,通过智能运维系统,可以查看每一块组件的位置及发电情况等信息,运维精度更高,能更快、更精准地定位故障问题。组串式逆变器:对整串组件进行控制,即组串级控制,运维时只可看到整串组件的发电情况等信息,运维精度相对较低。

六、安装位置与灵活性

微型逆变器:采用模块化设计,自身体积小且重量轻,可以直接安装在光伏支架上,即插即用,基本不独立占用安装空间,且可根据实际需求选择逆变器数量,实现灵活扩容。组串式逆变器:一般就近安装在某一串组件的下方,采用固定支架或抱箍式安装将设备固定在立柱上,或者安装在临近的墙面上,安装位置相对固定,扩容时需要考虑更多因素。

七、小结

微型逆变器和组串式逆变器各有其优势和适用场景。组串式逆变器因具备成熟可靠的技术及低成本优势,成为了分布式光伏市场的主要选择。而微型逆变器在技术进步的加持下,其单瓦成本正在不断下降,且随着业内对光伏电站的安全性、系统效率以及智能化运维等方面提出更高的要求,微型逆变器将会得到更多的应用。在选择逆变器时,应因地制宜,根据具体需求和场景选择合适的逆变器类型。

到底什么是组串式逆变器?

组串式逆变器是一种逆变器类型,主要应用于光伏电站中,其主要功能是将光伏组件产生的直流电转换为交流电。

组串式逆变器的详细解释如下:

1. 基本定义

组串式逆变器,也被称为字符串逆变器或分布式逆变器,是光伏系统中的关键设备之一。它直接安装在光伏组件的支架附近或组件的直流侧,将单个或多个光伏组件产生的直流电转换为符合电网要求的交流电。

2. 工作原理

组串式逆变器的主要工作原理基于电力电子转换技术。当光伏组件产生的直流电经过逆变器时,逆变器通过内部的电路转换,将直流电转换为交流电。这种转换过程通常包括最大功率点跟踪技术,以确保光伏组件始终在最大功率点运行。

3. 特点与优势

组串式逆变器具有许多优势,包括适用于小型和大型光伏系统、易于安装和维护、响应速度快等。此外,由于其对每个光伏组件或组件串进行单独的监控和控制,因此可以提供更高的效率和可靠性。此外,组串式逆变器还可以根据环境条件调整其工作状态,从而进一步提高系统的整体性能。

总的来说,组串式逆变器是光伏系统中不可或缺的一部分,其高效、可靠的工作方式确保了光伏电站的稳定运行和高效发电。

光伏逆变器的电路结构、原理及故障处理!

光伏逆变器的电路结构、原理及故障处理

一、光伏逆变器的电路结构

光伏逆变器的电路结构主要由以下六部分组成:

输入电路:为主逆变电路提供可确保其正常工作的直流工作电压。主逆变电路:是逆变装置的核心,通过电力电子开关的导通与关断,完成逆变的功能。该电路分为隔离式和非隔离式两种。输出电路:对主逆变电路输出的交流电波形、频率、电压、电流的幅值和相位等进行修正、补偿、调理,以确保输出电能的稳定性和质量。控制电路:为主逆变电路提供一系列的控制脉冲,以控制逆变开关器件的导通与关断,从而配合主逆变电路完成逆变功能。辅助电路:将输入电压变换成适合控制电路工作的直流电压,并包含各自的检测电路,用于监测和反馈系统状态。保护电路:主要包括输入过欠压保护、输出过欠压保护、过流保护、短路保护、孤岛保护等,以确保逆变器在异常情况下能够安全停机,保护设备和人身安全。

二、光伏逆变器的工作原理

光伏逆变器的工作原理是将直流电(DC)转变为交流电(AC)。具体过程如下:

直流电输入:光伏组件产生的直流电通过输入电路进入逆变器。逆变过程:在主逆变电路中,半导体功率开关器件在控制电路的作用下以极快的速度(如1/100秒)开关,将直流电切断并重新组合成交流电。这个过程需要精确的控制和调节,以确保输出交流电的波形、频率、电压等参数符合电网要求。输出调整:输出电路对逆变后的交流电进行进一步的修正和补偿,以确保其稳定性和质量。并网控制:对于并网型逆变器,还需要通过微处理器电路进行并网控制,使逆变器输出的交流电压值、波形、相位等维持在规定的范围内,与电网同步运行。

三、光伏逆变器的故障处理

光伏逆变器在运行过程中可能会遇到各种故障,以下是一些常见的故障及其处理方法:

绝缘阻抗低:使用排除法,逐一检查逆变器输入侧的组串,找到问题组串后重点检查直流接头是否有水浸短接支架或烧熔短接支架,以及组件本身是否有黑斑烧毁导致漏电。母线电压低:如果出现在早晚时段,可能是正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,则使用排除法检查问题所在。漏电流故障:根本原因是安装质量问题,如选择错误的安装地点、低质量的设备等。可以通过洒粉找出漏电点并做好绝缘工作,如果是材料本身问题则只能更换材料。直流过压保护:设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。可以调整设计参数或增加保护措施来避免此类故障。逆变器开机无响应:确保直流输入线路没有接反,并仔细阅读逆变器说明书确保正负极后再压接。逆变器内置反接短路保护,在恢复正常接线后应能正常启动。电网故障:包括电网过压、欠压、过/欠频、无电压、缺相等。处理方法包括找供电局协调电压、正确选择并网并严抓电站建设质量、检查并网线路和缺相电路等。对于三相不平衡等问题,需要采取额外的措施进行解决。

展示

以上内容涵盖了光伏逆变器的电路结构、工作原理以及常见故障处理方法,希望对解决您的问题有所帮助。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言