发布时间:2025-09-03 06:20:53 人气:
微电网逆变器PQ控制_SIMULINK_模型搭建详解
微电网逆变器PQ控制_SIMULINK_模型搭建详解
一、PQ控制概述
PQ控制,即恒功率控制,是微电网逆变器的一种经典控制方式。在这种控制方式下,电压和频率由电网给定,逆变器通过控制电流进而控制输出的功率为给定值。因此,PQ控制本质上是一种电流控制。
二、PQ控制框图解析
如上图所示,PQ控制框图主要包括以下几个部分:
功率环:根据给定的功率指令(P和Q)与实际输出的功率进行比较,得到电流的参考信号。电流环:对电流参考信号进行PI调节,得到三相调制波的dq轴分量。2r/3s逆变换:将dq轴分量转换为三相调制波。SPWM调制:将三相调制波与载波进行比较,产生六路PWM脉冲信号,控制开关管的通断。三、SIMULINK模型搭建
1. 功率电路部分
功率电路部分主要包括直流源、两电平变换器、LC滤波器、电网及线路阻抗。采样输出的电压电流信号送入控制部分。
2. 控制电路部分
控制电路部分主要实现以下功能:
利用电压电流信号求得瞬时功率。电压锁相,确保与电网电压同步。坐标变换,将三相静止坐标系转换为dq旋转坐标系。功率指令求得电流的参考信号,经过电流环PI调节得到三相调制波。3. SPWM发波部分
SPWM发波部分采用双极性调制方式,确定六路PWM脉冲信号,控制开关管的通断。
至此,SIMULINK模型搭建完毕。
四、仿真结果
1. 功率输出
仿真结果显示,输出的有功功率为10kW,无功功率为0,能够准确跟踪给定信号。
2. 输出电压电流信号
输出电压电流信号波形良好,符合预期。
3. 电流信号的THDi
测量此时电流信号的THDi(总谐波失真),结果为0.84%,满足电网小于5%的要求。
五、总结
本文详细介绍了微电网逆变器PQ控制的SIMULINK模型搭建过程,包括功率电路部分、控制电路部分和SPWM发波部分的搭建。仿真结果显示,该模型能够准确跟踪给定的功率指令,输出电压电流信号波形良好,且电流信号的THDi满足电网要求。希望本文能够为读者在微电网逆变器控制方面的研究和应用提供参考。
为什么三电平逆变器的谐波含量比两电平逆变器的少?
三电平逆变器的谐波含量比两电平逆变器的少,主要原因如下:
拓扑结构和工作原理的优势:
三电平逆变器具有额外的零电平通路,这使得其相电压可以输出三个电平,相较于两电平逆变器,三电平逆变器的输出电压波形更加接近正弦波。这种更接近正弦波的电压波形自然减少了谐波成分,从而降低了总谐波失真。损耗分布和器件电压的降低:
三电平逆变器通过降低器件的阻断电压,使得每个器件承受的电压减少,这有助于降低开关损耗。损耗的降低不仅提高了系统效率,还有助于减少因开关动作产生的谐波。电磁干扰的改善:
三电平逆变器中器件的dv/dt大幅降低,这有助于改善系统的电磁干扰情况。电磁干扰的减少也间接降低了谐波的产生和传播。综上所述,三电平逆变器通过其独特的拓扑结构和工作原理,在输出电压波形质量、系统效率和器件可靠性方面展现出优势,从而减少了谐波含量。
逆变器中提到的两电平逆变器,三电平逆变器中的电平是什么
在逆变器中,电平概念指的是用于信号传输或能量转换的电压级别。两电平逆变器设计简洁,仅提供两种电压级别:高或低,适用于低成本应用。相比之下,三电平逆变器提供三种电压级别,通过引入电压中点,实现更精细的电压控制,如图所示。
三电平逆变器相比两电平逆变器,在系统层面拥有显著优势:
1. **损耗减少、开关频率提升、成本降低**:例如在NPC1拓扑中,开关器件的电压降低至原来的一半,大幅降低了器件的开关损耗。提升开关频率后,可以减小输出滤波器的体积和成本。在功率等级不变的情况下,通过提高母线电压,可以减小输出端电流,降低输出线缆成本。
2. **器件可靠性提升**:在相同电压等级的系统中,三电平拓扑中的器件承受的阻断电压更低,从而提升了器件的可靠性。
3. **改善电磁干扰(EMI)**:三电平逆变器在开关过程中的dv/dt显著降低,有效改善了系统的电磁干扰。
尽管三电平逆变器存在器件成本增加、控制算法复杂度提升、损耗分布不均和中点电位波动等挑战,但其独特优势使得其在光伏、储能、UPS、APF等众多应用领域得到了广泛使用。下面将详细介绍常见的三电平拓扑:
- **NPC1拓扑**:通过优化电流路径和零电平换流机制,实现了损耗分布的优化和EMI的改善。在逆变工况中,NPC1的损耗主要集中在T1/T4管,而在整流工况中,主要损耗集中在T2/T3管和D5/D6管。仿真结果显示,在高频系统中,NPC1拓扑效率更优。
- **NPC2拓扑**:相较于NPC1,NPC2减少了二极管的数量,采用共射极或共集电极的IGBT和反并联二极管取代钳位二极管,从而降低了损耗,提高了中低开关频率下的系统效率。仿真表明,当电流等级和耐压相同,NPC2拓扑在中低开关频率下的总损耗低于NPC1拓扑。
- **ANPC拓扑**:通过替换钳位二极管为IGBT和反并联二极管,ANPC拓扑进一步优化了损耗分布,通过选择不同的零电平换流路径,实现了更均衡的损耗控制。ANPC的调制算法(ANPC-1、ANPC-2和ANPC-1-00)分别针对不同的损耗特性进行了优化。
英飞凌提供了丰富多样的功率器件,包括OptiMOS™、CoolMOS™、CoolSiC™ MOSFET以及IGBT,满足家用、商用到电站级大型项目的太阳能逆变器设计需求。此外,英飞凌的Easy 1B/2B模块和集成型产品如EiceDRIVER™栅极驱动器IC和XMC™控制器,提供了高集成度和功能性集成解决方案。
对于寻找更多应用、产品信息或购买产品的用户,英飞凌提供了在线信息填写表单,用户可以填写个人信息和需求,英飞凌将安排专人跟进。
光伏漫谈4- 逆变器拓扑结构
光伏逆变器拓扑结构概述
光伏逆变器作为光伏发电系统中最关键的设备之一,其拓扑结构的选择对于系统的性能、效率和成本具有重要影响。根据功率等级、应用场景以及隔离要求的不同,逆变器拓扑结构呈现出多样性。以下是对几种常见光伏逆变器拓扑结构的详细解析:
一、工频隔离逆变器
工频隔离逆变器通过工频50Hz变压器实现源边和副边的功率传输。这种拓扑结构最为简单,仅需整流桥、滤波器和工频变压器即可。然而,由于50Hz工频变压器的体积较大,导致整个逆变器系统的体积和成本增加,因此在实际应用中很少使用。
二、高频隔离逆变器
高频隔离逆变器在微型逆变器中使用较多,为了降低体积和重量,通常采用高频隔离的拓扑结构。以下是三种常见的高频隔离微型逆变器:
带有直流母线的隔离全桥逆变器
这种拓扑结构具有中间直流母线,变压器源边的整流与副边的逆变器可以解耦分别调整。然而,该架构使用的功率器件较多,且需要高压直流母线电容进行整流滤波,增加了系统的复杂性和成本。
伪直流母线的交错反激逆变器
伪直流母线拓扑实际上没有直流母线,通过交错反激结构将直流信号变换成正半周期的正弦波,再通过可控硅调整成全周期正弦波。该拓扑节省了大量高压电容,降低了系统成本,但效率相对较低,适用于小功率微型逆变器。
不含直流母线的串联谐振逆变器
这种拓扑结构同样不需要直流母线和高压电容滤波,变压器源边工作在零电压开通状态,效率较高。该结构不仅适用于光伏逆变器,还可用于户用储能逆变器。
三、非隔离的逆变器拓扑
非隔离逆变器拓扑结构省去了变压器,因此效率更高、体积更小、成本更低。然而,由于没有变压器隔离,可能存在零点偏移和直流分量等问题,需要采取相应的措施进行抑制。以下是两种常见的非隔离逆变器拓扑:
带有MPPT升压的2电平非隔离逆变器拓扑
这种拓扑结构通过带有单路或多路MPPT并联到直流母线,再通过2电平逆变结构实现组串式逆变器。为了消除直流分量,可以采用交流或直流旁路方式。
带有旁路二极管的BOOST双模式非隔离逆变器拓扑
该结构设计巧妙,BOOST电路不仅将PV输入升压成DC电压,还直接升压到工频信号。通过BOOST和逆变两种模式交替工作,可以实现完整的正弦输出。
四、组串式逆变器NPC拓扑
组串式逆变器在光伏系统中应用广泛,NPC三电平逆变器是其中一种常见的拓扑结构。NPC三电平逆变器具有效率高、谐波小等优点。以下是三种NPC三电平逆变器的变体:
I型NPC三电平逆变拓扑
I型NPC三电平拓扑结构相对简单,但存在内外管开关损耗不平衡的问题。
ANPC三电平逆变拓扑
ANPC三电平拓扑通过将两个二极管更换成IGBT,实现了内外管开关损耗的平衡。然而,该拓扑控制较复杂,开关管也较多,系统成本和体积较大。
T型NPC逆变器拓扑
T型三电平拓扑同样使用4个IGBT功率管,但其中处于中性点的是一对背靠背连接的IGBT。该拓扑结构开关损耗平衡,效率高,但功率管的耐压需要与母线电压相同,适用于低压系统或需要更高耐压功率管的实现。
总结而言,光伏逆变器的拓扑结构多种多样,每种拓扑结构都有其独特的优点和适用场景。随着功率器件开关特性和耐压的提升,以及学术界研究的深入,未来仍将有更多逆变器拓扑结构衍生出来,进一步提升应用效率、降低体积和成本。
逆变器的逆变效率如何加强,降低了器件的开关损耗
逆变器的逆变效率可以通过以下方式加强,同时降低器件的开关损耗:
一、采用先进的控制方法
空间矢量脉宽调制(SVPWM):这是一种全数字化的控制方式,具有直流电压利用率高、易于控制等优点。SVPWM通过优化空间向量的合成,可以在相同输出电压下使用较低的直流母线电压,从而降低功率开关器件的电压应力,减少器件的开关损耗。此外,通过不同的向量序列组合和排序,还可以进一步减少功率器件的开关次数,进一步降低开关损耗。二、使用高性能材料
碳化硅(SiC)材料:碳化硅器件的单位面积阻抗仅为硅器件的百分之一,用碳化硅制成的IGBT等功率器件可将导通阻抗降低到常规硅器件的十分之一。碳化硅技术能有效降低二极管的反向恢复电流,从而降低功率器件的开关损耗和主开关所需的电流容量。以碳化硅二极管为主开关的反并联二极管可以显著提高功率逆变器的效率。三、应用软开关和多电平技术
软开关技术:利用谐振原理,软开关技术可以使开关器件中的电流或电压按照正弦或准正弦规律变化。当电流自然过零时,器件关断;当电压自然过零时,器件导通。这种方式可以显著降低开关损耗,并解决感性断开和容性开路的问题。多电平技术:三电平功率逆变器主要应用于高压大功率场景。与传统的两电平结构相比,三电平逆变器增加了零电平输出,使得功率器件的电压应力降低一半。因此,在相同开关频率下,三电平逆变器可以采用比二电平逆变器更小的输出滤波电感,有效降低电感损耗、成本和体积。同时,在相同的输出谐波含量下,三电平逆变器可以采用更低的开关频率,从而降低开关损耗并提高转换效率。四、优化器件选型与电路设计
选择合适的功率器件:根据逆变器的应用场景和性能要求,选择合适的功率器件型号和规格,以平衡导通损耗和开关损耗。优化电路设计:通过优化电路设计,如采用更高效的变压器和电感等磁性器件,以及优化散热设计等,可以进一步降低逆变器的损耗并提高效率。以下是关于逆变器效率提升技术的示意图:
综上所述,通过采用先进的控制方法、使用高性能材料、应用软开关和多电平技术以及优化器件选型与电路设计等措施,可以有效加强逆变器的逆变效率并降低器件的开关损耗。这些措施的实施将有助于提高逆变器的整体性能和可靠性,满足各种应用场景的需求。
一文看懂逆变器的17种主要类型
逆变器的17种主要类型
逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:
一、按输入源分类
电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。
电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。
二、按输出相位分类
单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。
三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。
三、按换向技术分类
线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。
强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。
四、按连接方式分类
串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。
并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。
半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。
全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。
三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。
五、按操作模式分类
独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。
并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。
双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。
六、按输出波形分类
方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。
准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。
纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。
七、按输出电平数量分类
两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。
多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。
以下是部分逆变器的展示:
综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。
两电平svpwm的扇区判断和三电平svpwm的扇区判断方法一致吗
三电平SVPWM与两电平SVPWM在原理上存在一定的差异,主要体现在控制策略和输出性能上。两电平逆变器与三电平逆变器的比较揭示了三电平逆变器在器件开关应力、损耗、输出波形逼近以及效率提升等方面的优势。
三电平逆变器结构更加复杂,包括三个桥臂,每个桥臂上四个开关管以及中性线。在三电平逆变器中,当上半桥臂和下半桥臂的两个管子同时导通时,相电压为正或负的半个电压值。当中间两个管子同时导通时,相电压为零。这种设计允许每相电压存在三个电平,组合形成27个不同的电压矢量,提高了输出电压的准确性和稳定性。
在三电平SVPWM中,扇区判断和区域判断模块的引入是关键步骤。通过将空间矢量图分为6个大扇区,每个扇区再细分为4个小扇区,可以精确地确定参考电压矢量所在的位置。参考矢量的确定结合区域分布和几何关系,有助于实现电压矢量的有效控制。
在三电平SVPWM中,短矢量作为每个采样周期的起始矢量,确保了开关状态分配的简便性和一致性。通过使用中心对称的七段式SVPWM波形,基本矢量的作用时间被分配给对应的矢量状态,实现对主电路开关器件的精准控制。
与两电平SVPWM相比,三电平SVPWM在输出性能方面展现出显著优势。它能够提供更接近正弦波的输出电压,降低谐波含量,并减少开关元件的应力和损耗。此外,三电平逆变器在减少电磁干扰(EMI)方面表现更佳,因为开关元件一次动作的du/dt通常只有两电平的一半。
尽管三电平电路具有诸多优点,但也存在一些挑战。例如,需要更多的开关器件,控制算法更为复杂,以及电位不平衡问题。然而,这些缺点可以通过合理的电路拓扑结构和优化的控制策略来缓解。在实际应用中,二极管钳位式拓扑结构因其成熟性和可靠性,广泛应用于三电平逆变器的主电路设计中。
综上所述,三电平SVPWM与两电平SVPWM在扇区判断和区域判断方法上确实存在差异,这些差异体现在控制策略、输出性能和系统设计方面。在追求更高效率、更高质量输出和更小损耗的应用场景中,三电平SVPWM具有显著优势。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467