Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器电抗器声音大

发布时间:2025-09-03 03:10:21 人气:



光伏并网逆变器如何提升转换效率?

提升转换效率的前提是要降低损耗。而IGBT的损耗是决定了能否提升转换效率的根本⌄因此可以通过降低IGBT的损耗来提升效率。但是需要注意,这种损耗的降低是有一定限制的,不能无限制的进行降低。适度的降低开关频率是提升转换效率的关键,避免盲目降低开关频率而导致出现电能质量下降的情况。

其次光伏并网逆变器的转换率需要降低变压器的损耗。变压器的损耗通常是来源于自身的铜铁损耗,能够降低这两方面的损耗,就能够有效提升逆变器的转换率。

此外,电抗器的损耗也是影响转换率的关键因素。在这个因素的基础上能够降低电抗器的感抗,就能够有效提升逆变器的转换效率。

详细可以咨询下古瑞瓦特,他们是专业的光伏逆变器厂家,可以给到更为专业全面的解答。

光伏逆变器详解

光伏逆变器详解

逆变器又称电源调整器,是在太阳能光伏并网发电过程中用于将太阳能电池产生的直流电转化为交流电的器件。

一、光伏逆变器的结构

光伏逆变器的结构主要由以下几部分组成:

直流输入端:主要由太阳能电池板、直流断路器、直流保险丝、直流接触器等组成。太阳能电池板负责将太阳能转化为直流电,直流断路器和直流保险丝用于保护逆变器和电池板,直流接触器则用于控制电池板的输出。

逆变器芯片:是光伏逆变器的核心部件,由功率半导体器件、驱动电路、控制电路等组成。逆变器芯片的主要作用是将直流电转换为交流电,以满足家庭、企业等用电需求。

交流输出端:主要由交流接触器、交流保险丝、交流滤波器等组成。交流接触器用于控制交流电的输出,交流保险丝用于保护逆变器和用电设备,交流滤波器则用于滤除交流电中的杂波和干扰。

控制电路:主要由微处理器、传感器显示器等组成。控制电路的主要作用是监测逆变器的工作状态,控制逆变器的输出电压和频率,保证逆变器的稳定工作。

散热器:主要由散热片、散热风扇等组成。散热器的主要作用是散热,保证逆变器的正常工作。

二、光伏逆变器的原理

光伏逆变器的工作原理主要包括以下几个方面:

直流电转换为交流电:通过功率半导体器件(如绝缘栅双极晶体管,IGBT)的开关动作,将直流电转换为交流电。

电压变换:通过变压器或电抗器等设备,将转换后的交流电进行升压或降压,以适应不同的应用需求。

滤波和调节:通过滤波电路和调节电路,使得输出的交流电质量满足并网标准。

三、光伏逆变器的主要技术指标

光伏逆变器的主要技术指标包括:

输出电压的稳定度:蓄电池在充放电过程中会受到影响,导致其电压不稳定,会有区间的变化。为了确保电压的稳定性,输出端电压波动范围为±10%。

输出电压的波形失真度:通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许10%)。

额定输出频率:输出频率偏差应在1%以内。

负载功率因数:正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。

逆变器效率:主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。

保护措施:包括欠压、过压、过电流、短路、输入反接、防雷以及过温保护等。

噪音:逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。

四、光伏逆变器的作用

光伏逆变器不仅具有直交流变换功能,还具有以下重要作用:

自动运行和停机功能:能够根据光照强度等条件自动启动和停止工作。

最大功率跟踪控制功能:实时追踪光伏电池的最大功率输出点,提高发电效率。

防单独运行功能(并网系统用):在电网故障时能够自动断开与电网的连接,防止孤岛效应的发生。

自动电压调整功能(并网系统用):能够根据电网电压的变化自动调整输出电压,保持电网的稳定运行。

直流检测功能(并网系统用):对直流输入端的电压和电流进行实时监测,确保系统的正常运行。

直流接地检测功能(并网系统用):能够检测直流输入端是否接地,确保系统的安全运行。

五、光伏并网逆变器的关键技术

光伏并网逆变器的关键技术包括:

最大功率追踪:为了提高光伏系统的发电效率,需要实时追踪光伏电池的最大功率输出点。常用的最大功率追踪方法有“峰值电流控制”、“恒压控制”和“MPPT控制”等。

并网控制策略:是确保逆变器并网后能安全、稳定、高效运行的关键。常用的并网控制策略包括“间接电流控制”、“直接电流控制”和“基于电压/频率的控制”等。

孤岛效应防护:在电网故障时,光伏并网逆变器需要能够防止孤岛效应,保证设备和人员的安全。为此,需要设计合理的孤岛效应防护策略。

六、光伏逆变器目前主流厂家

目前市场上主流的光伏逆变器厂家包括阳光电源、科华、首航新能等。这些厂家在光伏逆变器领域具有深厚的技术积累和丰富的产品经验,能够提供高效、稳定、可靠的光伏逆变器产品。

七、光伏逆变器的未来发展

未来光伏逆变器的发展将呈现以下趋势:

效率更大化:通过技术创新和工艺改进,不断提高光伏逆变器的转换效率,以最大化太阳能电池的发电效率。

更加集成:未来的光伏系统将向着更加集成的方式发展,将逆变器、电池管理系统、智能控制等融为一体,形成一体化的能量管理系统。

智能化发展:通过引入物联网、大数据、人工智能等技术,实现联网故障检测、远程监控及优化控制的目的,提高光伏系统的智能化水平。

光储充一体化:光储充一体化将是未来的主导方向,将光伏发电、储能和充电设施相结合,形成一体化的能源供应系统。

以上内容仅供参考,如需更多信息,建议查阅光伏逆变器相关文献或咨询光伏逆变器领域专业人士。

变频器如何选配电抗器

电抗器在变频器系统中的应用

随着电力电子技术的迅速发展,从20世纪90年代以来交流变频调速已成为电气传动的主流,其应用范围日益广泛。但是,由于变频器被使用在各种不同的电气环境,若不采取恰当的保护措施,就会影响变频器运行的稳定性和可靠性。

电抗器能够限制电网电压突变和操作过电压引起的电流冲击,有效地保护变频器和改善其功率因数。接入与未接入进线电抗器时,变频器输入电网的谐波电流的情况如图1所示。从图1可以看出,接入电抗器后能有效地抑制谐波电波。

直流电抗器接在变频系统的直流整流环节与逆变环节之间,LDC能使逆变环节运行更稳定,及改善变频器的功率因数。输出电抗器接在变频器输出端与负载(电机)之间,起到抑制变频器噪声的作用。三种电抗器在变频器中的连接如图2所示。

需要安装进线电抗器的场合

进线电抗器既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染,当电源容量很大时,更要防止各种过电压引起的电流冲击,因为它们对变频器内整流二极管和滤波电容器都是有害的。因此接入进线电抗器,对改善变频器的运行状况是有好处的。

在下列场合一定要安装进线电抗器,才能保证变频器可靠的运行:电源容量为600kVA及以上,且变频器安装位置离大容量电源在10m以内;三相电源电压不平衡率大于3%;其它晶闸管变流器与变频器共用同一进线电源,或进线电源端接有通过开关切换以调整功率因数的电容器装置。

进线电抗器容量的选择

进线电抗器的容量可按预期在电抗器每相绕组上的压降来决定。一般选择压降为网侧相电压的2%~4%,也可按表1的数据选取。电感量L的计算公式如式(2)所示:L=△UL/(2πfIn)=0.04Uvø/(πfIn)。

进线电抗器压降不宜取得过大,压降过大会影响电机转矩。一般情况下选取进线电压的4%(8.8V)已足够,在较大容量的变频器中如75kW以上可选用10V压降。

直流电抗器和输出电抗器的作用

在有直流环节的变频系统中,在整流器后接入直流电抗器可以有效地改善功率因数,配合得当可以将功率因数提高到0.95。直流电抗器能使逆变器运行稳定,并能限制短路电流,所以很多厂家生产的55kW以上的变频器都随机供应直流电抗器。

输出电抗器的主要作用是补偿长线分布电容的影响,并能抑制变频器输出的谐波,起到减小变频器噪声的作用。有些厂家还提供有输出电抗器与无输出电抗器时,连接电机的导线允许的最大长度。

三相交流进线电抗器的设计计算

选定电抗器的额定电压降ΔUL,再计算出电抗器的额定工作电流In以后,就可以计算电抗器的感抗XL。电抗器的感抗XL由式(3)求得:XL=ΔUL/In(Ω)。

有了以上数据便可以对电抗器进行结构设计。电抗器铁芯截面积S与电抗器压降ΔUL的关系,如式(4)所示:式中:ΔUL——单位V;f——电源频率(Hz);B——磁通密度(T);N——电抗器的线圈圈数;Ks——铁芯迭片系数取Ks=0.93。

电抗器铁芯窗口面积A与电流In及线圈圈数N的关系如式(5)所示:A=InN/(jKA)。式中:j——电流密度,根据容量大小可按2~2.5A/mm2选取;KA——窗口填充系数,约为0.4~0.5。铁芯截面积与窗口面积的乘积关系如式(6)所示:SA=UI/(4.44fBjKsKA×10-4)。

由式(6)可知,根据电抗器的容量UI(=ΔULIn)值,选用适当的铁芯使截面积SA的积能符合式(6)的关系。

为了使进线电抗器有较好的线性度,在铁芯中应有适当的气隙。调整气隙,可以改变电感量。气隙大小可先选定在2~5mm内,通过实测电感值进行调整。

电抗器电感量的测定

铁芯电抗器的电感量和它的工作状况有很大关系,而且是呈非线性的,所以应尽可能使电抗器处于实际工作条件下进行测量。图4所示是测量直流电抗器的电路。在电抗器上分别加上直流电流Id与交流电流I~,用电容C=200μF隔开交直流电路,测 出LDC两端的交流电压U~与交流电流I~,可由式(9)、式(10)式近似计算电感值L。

对于用硅钢片叠制而成的交流电抗器,电感量的测量可用工频电源的交流电压表——电流表法测量,如图5所示。通过电抗器的电流可以略小于额定值,为求准确可以用电桥测量电抗器线圈内 阻rL,每相电感值可按式(11)计算:式中:U——交流电压表的读数(V);I——交流电流表的读数(A);rL——电抗器每相线圈电阻(Ω)。

逆变器频率高怎么回事

逆变器频率高可能由多种因素导致,以下是一些主要原因及解释

功率需求与载波频率的关系

在逆变器中,载波频率与功率输出有一定的关系。一般来说,变频器功率越大,载波频率可能会越低。但这并不意味着所有情况下逆变器频率高都是由于功率小导致的,因为频率高还可能受到其他因素的影响。

模块开关损耗与波形质量

载波频率越高,输出电流波形越接近正弦波,这有助于提高电流的质量。然而,高的载波频率也意味着模块的开关损耗增大,这可能会导致逆变器效率降低,同时产生更多的热量。

逆变器设计与控制策略

逆变器的设计和控制策略也会影响其输出频率。例如,某些先进的控制算法可能会提高逆变器的响应速度,从而导致输出频率升高。此外,逆变器的硬件设计,如滤波器的选择,也会影响输出频率。

外部干扰与电网影响

逆变器在工作过程中可能会受到外部干扰,如电磁噪声等,这些干扰可能会影响逆变器的输出频率。同时,电网的波动和不稳定也可能导致逆变器频率发生变化。

谐波产生与解决方案

逆变器在逆变过程中可能会产生高次谐波,这些谐波不仅会对其他设备造成干扰,还可能污染电网。为了解决这一问题,可以在变频器的输入侧和输出侧加电抗器,以减少谐波的产生和传播。

总结:逆变器频率高可能是由于功率需求、模块开关损耗、逆变器设计与控制策略、外部干扰以及谐波产生等多种因素导致的。为了降低频率并提高逆变器的性能,可以采取相应的措施,如优化控制算法、改进硬件设计、加强滤波以及减少外部干扰等。同时,对于谐波问题,可以通过加电抗器等手段进行有效解决。

光伏逆变器的转换效率!

光伏逆变器的转换效率标准不得低于94%(有变压器型)或96%(无变压器型)。以下是对光伏逆变器转换效率的详细解析:

一、光伏逆变器转换效率的标准

光伏逆变器作为将直流电转换为交流电的关键设备,在光伏发电系统中起着至关重要的作用。为了保证客户的最大利益,国家标准以及企业标准都给出了光伏逆变器整机转换效率的限值。对于有变压器的逆变器,其转换效率不得低于94%;对于无变压器型逆变器,其转换效率则不得低于96%。这些标准的制定是基于精密的计算和大量的测试,旨在规范逆变器市场,确保产品的性能和质量。

二、光伏逆变器整机转换效率的定义

光伏逆变器的整机效率是指逆变器将输入的直流功率转换为交流功率的比值。这个比值是通过逆变器接受的输入直流功率,经过内部逆变和滤波后,输出到电网的交流功率来计算的。由于逆变器内部的逆变电路及相关器件存在一定的损耗,因此输出功率总是小于输入功率,即转换效率永远小于1。整机转换效率的数学表达公式为:光伏逆变器转换效率 = 逆变器输出功率 / 光伏逆变器直流输入功率 × 100%。

三、光伏逆变器转换效率的重要性

提高光伏逆变器的转换效率对于提升整个光伏发电系统的性能至关重要。以500KW的逆变器为例,如果提高0.5%的转换效率,在最有利的天气条件下,每天可以多发出将近13度电,一年即可多发出将近2700度电,十年即可多发出27000度电。这相当于一台2.5KW光伏逆变器的发电量,为客户节省了一台2.5KW光伏逆变器的电站投资。因此,为了提高客户的最大利益,需要尽可能提高逆变器的转换效率,但同时也要考虑逆变器的成本。

四、如何提高光伏逆变器转换效率

为了提高光伏逆变器的转换效率,可以从以下几个方面入手:

降低IGBT损耗:IGBT是逆变器中的关键器件,其损耗对转换效率有重要影响。通过降低IGBT的开关频率,可以减少其损耗,但需要注意平衡波形质量和机器噪音。降低变压器损耗:变压器的损耗包括铜损和铁损。通过优化变压器的设计和材料选择,可以降低这两个损耗,从而提高逆变器的转换效率。提高电抗器Q值:电抗器的损耗也会影响逆变器的转换效率。通过提高电抗器的Q值(即降低电抗器的感抗),可以减少其损耗,从而提高转换效率。五、光伏逆变器转换效率的测试

在测试光伏逆变器的转换效率时,需要综合考虑不同负载下的效率表现。因为逆变器在实际应用中不可能完全处在最大效率点运行,也不会完全处在满载下运行。因此,需要测试光伏逆变器在整个负载范围内的效率曲线,以了解其在实际应用中的性能表现。同时,还需要考虑当地天气等因素对效率的影响,综合考虑实际情况努力使效率在最佳数值。

综上所述,光伏逆变器的转换效率是衡量其性能的重要指标之一。通过优化设计和测试方法,可以不断提高逆变器的转换效率,为光伏发电系统的性能提升和成本降低做出贡献。

直流电抗器的作用

直流电抗器的作用主要包括以下几点:

防止逆变器换流失败

直流电抗器串联在换流站的每一极上,通过其电感特性,可以有效地稳定直流电流,防止逆变器在换流过程中因电流波动过大而失败。

降低直流线路中的电压和电流谐波

在直流电路中,电抗器能够吸收和抑制谐波,从而降低直流线路中的电压和电流谐波含量,提高电力系统的稳定性和效率。

降低纹波系数

直流电抗器能够平滑直流电流,减小电流的波动,从而降低纹波系数,使得直流电流更加稳定。

限制线路短路时整流器中的电流

在直流线路发生短路故障时,直流电抗器能够迅速限制整流器中的电流,防止电流过大对设备造成损坏,保护电力系统的安全运行。

提高功率因数

直流电抗器可将功率因数提高到0.9以上,甚至当同时配有交流电抗器时,可将变频调速系统的功率因数提高到0.95以上,从而提高电力系统的电能利用效率。

削弱电源刚接通瞬间的冲击

在电源刚接通时,直流电抗器能够削弱瞬间的电流冲击,保护电力系统中的其他设备免受损害。

此外,直流电抗器的电感取值必须保证在工频时直流电路不发生谐振,以确保其稳定运行。由于其体积较小,许多变频器已将直流电抗器直接安装在变频器内,进一步提高了变频器的性能和稳定性。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言