发布时间:2025-08-20 04:10:26 人气:
逆变器前级全桥测试步骤详解
逆变器前级全桥测试的核心在于分阶段验证电路功能,确保各元件参数与保护机制符合设计要求。
一、测试前准备
1. 工具和设备:需备齐示波器、万用表、电子负载及稳压直流电源,校准仪器精度并确认设备接地安全。
2. 电路初检:重点排查焊点是否虚焊,核对MOS管型号与安装方向,使用放大镜检查桥臂布线是否接触其他元件引脚。
二、静态参数检测
1. 电阻值测量:断开电源,用万用表分段测试各开关管D-S极电阻——关断状态应呈兆欧级高阻值,导通后阻值须低于1Ω。同步检测电感绕组通断及电容有无漏电。
2. 低压通电:输入12V直流电压,观察驱动电路供电电压是否稳定,栅极驱动电压是否符合MOS管规格书阈值(通常4-10V),中点电压对称误差须小于5%。
三、动态波形验证
1. 栅极信号:示波器探头接地后接入栅极,测量驱动脉冲上升时间是否小于50ns,占空比与设计文件对比偏差不超过±2%。同一桥臂上下管的驱动波形相位差必须180度。
2. 负载响应:连接额定负载时,用双通道示波器对比输入输出电压纹波。重点观测带载瞬间的电压跌落幅度,正常应控制在标称值的10%以内,同时记录不同负载下的效率曲线。
四、保护机制触发
1. 过流阈值:以每分钟10%速率提升负载电流,记录保护动作点。实测值较设定值的偏移量超过15%时,需检测电流采样电阻精度与比较器基准电压。
2. 电压保护:缓慢调高输入电压至标称值的120%,保护电路应能在50ms内切断主回路,重启后需确认自恢复功能有效性。
五、异常工况处理
发现波形畸变时,优先检查PWM芯片供电是否夹杂毛刺,用热成像仪定位异常发热元件。若出现上下管直通现象,需重新测量死区时间调节电路中的RC参数是否匹配驱动频率。
光伏逆变器详解
光伏逆变器详解
逆变器又称电源调整器,是在太阳能光伏并网发电过程中用于将太阳能电池产生的直流电转化为交流电的器件。
一、光伏逆变器的结构
光伏逆变器的结构主要由以下几部分组成:
直流输入端:主要由太阳能电池板、直流断路器、直流保险丝、直流接触器等组成。太阳能电池板负责将太阳能转化为直流电,直流断路器和直流保险丝用于保护逆变器和电池板,直流接触器则用于控制电池板的输出。
逆变器芯片:是光伏逆变器的核心部件,由功率半导体器件、驱动电路、控制电路等组成。逆变器芯片的主要作用是将直流电转换为交流电,以满足家庭、企业等用电需求。
交流输出端:主要由交流接触器、交流保险丝、交流滤波器等组成。交流接触器用于控制交流电的输出,交流保险丝用于保护逆变器和用电设备,交流滤波器则用于滤除交流电中的杂波和干扰。
控制电路:主要由微处理器、传感器显示器等组成。控制电路的主要作用是监测逆变器的工作状态,控制逆变器的输出电压和频率,保证逆变器的稳定工作。
散热器:主要由散热片、散热风扇等组成。散热器的主要作用是散热,保证逆变器的正常工作。
二、光伏逆变器的原理
光伏逆变器的工作原理主要包括以下几个方面:
直流电转换为交流电:通过功率半导体器件(如绝缘栅双极晶体管,IGBT)的开关动作,将直流电转换为交流电。
电压变换:通过变压器或电抗器等设备,将转换后的交流电进行升压或降压,以适应不同的应用需求。
滤波和调节:通过滤波电路和调节电路,使得输出的交流电质量满足并网标准。
三、光伏逆变器的主要技术指标
光伏逆变器的主要技术指标包括:
输出电压的稳定度:蓄电池在充放电过程中会受到影响,导致其电压不稳定,会有区间的变化。为了确保电压的稳定性,输出端电压波动范围为±10%。
输出电压的波形失真度:通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许10%)。
额定输出频率:输出频率偏差应在1%以内。
负载功率因数:正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。
逆变器效率:主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。
保护措施:包括欠压、过压、过电流、短路、输入反接、防雷以及过温保护等。
噪音:逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。
四、光伏逆变器的作用
光伏逆变器不仅具有直交流变换功能,还具有以下重要作用:
自动运行和停机功能:能够根据光照强度等条件自动启动和停止工作。
最大功率跟踪控制功能:实时追踪光伏电池的最大功率输出点,提高发电效率。
防单独运行功能(并网系统用):在电网故障时能够自动断开与电网的连接,防止孤岛效应的发生。
自动电压调整功能(并网系统用):能够根据电网电压的变化自动调整输出电压,保持电网的稳定运行。
直流检测功能(并网系统用):对直流输入端的电压和电流进行实时监测,确保系统的正常运行。
直流接地检测功能(并网系统用):能够检测直流输入端是否接地,确保系统的安全运行。
五、光伏并网逆变器的关键技术
光伏并网逆变器的关键技术包括:
最大功率追踪:为了提高光伏系统的发电效率,需要实时追踪光伏电池的最大功率输出点。常用的最大功率追踪方法有“峰值电流控制”、“恒压控制”和“MPPT控制”等。
并网控制策略:是确保逆变器并网后能安全、稳定、高效运行的关键。常用的并网控制策略包括“间接电流控制”、“直接电流控制”和“基于电压/频率的控制”等。
孤岛效应防护:在电网故障时,光伏并网逆变器需要能够防止孤岛效应,保证设备和人员的安全。为此,需要设计合理的孤岛效应防护策略。
六、光伏逆变器目前主流厂家
目前市场上主流的光伏逆变器厂家包括阳光电源、科华、首航新能等。这些厂家在光伏逆变器领域具有深厚的技术积累和丰富的产品经验,能够提供高效、稳定、可靠的光伏逆变器产品。
七、光伏逆变器的未来发展
未来光伏逆变器的发展将呈现以下趋势:
效率更大化:通过技术创新和工艺改进,不断提高光伏逆变器的转换效率,以最大化太阳能电池的发电效率。
更加集成:未来的光伏系统将向着更加集成的方式发展,将逆变器、电池管理系统、智能控制等融为一体,形成一体化的能量管理系统。
智能化发展:通过引入物联网、大数据、人工智能等技术,实现联网故障检测、远程监控及优化控制的目的,提高光伏系统的智能化水平。
光储充一体化:光储充一体化将是未来的主导方向,将光伏发电、储能和充电设施相结合,形成一体化的能源供应系统。
以上内容仅供参考,如需更多信息,建议查阅光伏逆变器相关文献或咨询光伏逆变器领域专业人士。
模拟芯片SG3525:PWM驱动设计
SG3525是一款广泛应用的PWM控制器,由多家制造商生产,如ST Microelectronics、Fairchild Semiconductors、On Semiconductors等。它广泛用于DC-DC转换器、DC-AC逆变器、家用UPS系统、太阳能逆变器、电源、电池充电器等众多应用。在进行详细描述和应用前,我们先来看看其框图和引脚布局。
SG3525的引脚介绍如下:
1. 引脚1(反相输入)和2(非反相输入)是板载误差放大器的输入,实现对PWM关联的“反馈”的占空比的增加或减少。
2. Pin1和Pin2用于负反馈,实现输出的稳定。当INV IN和NINV IN电压相等时,SG3525产生的占空比不再变化。通过调整电路输出到INV IN,NINV IN接到VREF,可实现INV IN跟随VREF。通过调整分压比例实现对输出的稳压控制。
3. Pin5连接电容CT再接地,Pin6连接电阻RT再接地,Pin7和Pin5之间接电阻RD用于电容CT放电,决定死区时间。PWM的频率取决于定时电容和定时电阻。定时电容(CT)连接在引脚5和地之间。定时电阻(RT)连接在引脚6和地之间。引脚5和7(RD)之间的电阻决定了死区时间(也会稍微影响频率)。频率与RT、CT和RD的关系如下:
4. 频率公式:RT和RD以Ω为单位,CT以F为单位,f以Hz为单位。RD的典型值在10Ω至47Ω范围内。可用值的范围(由SG3525制造商指定)为0Ω至500Ω。RT必须在2kΩ至150kΩ范围内。CT必须在1nF(代码102)至0.2μF(代码224)范围内。振荡器频率必须在100Hz至400kHz范围内。
5. PIN8是软起动功能,连接在引脚8和地之间的电容提供软启动功能。电容越大,软启动时间越长。这意味着从0%占空比变为所需占空比或最大占空比所需的时间更长。通过调整分压比例实现对输出的稳压控制。
6. PIN16是电压参考部分的输出,SG3525包含一个额定电压为+5.1V的内部电压参考模块,经过调整可提供±1%的精度。此参考通常用于向误差放大器提供参考电压,以设置反馈参考电压。它可以直接连接到其中一个输入,也可以使用分压器进一步降低电压。
7. PIN15是VCC芯片供电引脚,使SG3525运行。VCC必须在8V至35V范围内。SG3525具有欠压锁定电路,当VCC低于8V时,该电路可阻止运行,从而防止错误操作或故障。
8. PIN13是VC驱动电压,引脚13是SG3525驱动器级的电源电压,连接到输出图腾柱级中的NPN晶体管的集电极。因此得名VC。VC必须在4.5V至35V的范围内。输出驱动电压将比VC低一个晶体管的电压降。因此,在驱动功率MOSFET时,VC应在9V至18V的范围内(因为大多数功率MOSFET需要至少8V才能完全导通,并且最大VGS击穿电压为20V)。对于驱动逻辑电平MOSFET,可以使用较低的VC。必须小心确保不超过MOSFET的最大VGS击穿电压。同样,当SG3525输出馈送到另一个驱动器或IGBT时,必须相应地选择VC,同时牢记馈送或驱动设备所需的电压。当VCC低于20V时,通常将VC连接到VCC。
9. PIN12是接地连接,应连接到电路接地。它必须与其驱动的设备共用接地。
10. PIN11和PIN14是输出,驱动信号将从这些输出中获取。它们是SG3525内部驱动器级的输出,可用于直接驱动MOSFET和IGBT。它们的连续电流额定值为100mA,峰值额定值为500mA。当需要更大的电流或更好的驱动时,应使用使用分立晶体管的进一步驱动器级或专用驱动器级。同样,在驱动导致SG3525功率耗散和发热过多的设备时,应使用驱动器级。当以桥式配置驱动MOSFET时,必须使用高低侧驱动器或栅极驱动变压器,因为SG3525仅设计用于低侧驱动。
11. PIN10是高电平时快速关断,通常接低电平。引脚10为关机。当此引脚为低电平时,PWM启用。当此引脚为高电平时,PWM锁存器立即设置。这为输出提供了最快的关机信号。同时,软启动电容器通过150μA电流源放电。关闭SG3525的另一种方法是将引脚8或引脚9拉低。但是,这不如使用关机引脚那么快。因此,当需要快速关机时,必须向引脚10施加高信号。此引脚不应悬空,因为它可能会拾取噪声并导致问题。因此,此引脚通常通过下拉电阻保持在低电平。
12. PIN9为补偿,与PIN1一起用于补偿反馈信号。引脚9为补偿,可与引脚1配合使用,提供反馈补偿。
在了解了每个引脚的功能后,我们来设计一个实际应用电路。为了设计一个以50kHz运行的电路,驱动MOSFET(采用推挽配置),该MOSFET驱动铁氧体磁芯,然后升压高频交流电,然后整流和滤波,以产生290V稳压输出直流电,可用于运行一个或多个CFL。电路设计包含以下参数和步骤:
1. 电源电压已提供,并已接地。VC已连接到VCC。在电源引脚上添加了一个大容量电容器和一个去耦电容器。去耦电容器(0.1μF)应尽可能靠近SG3525。始终在所有设计中使用它。也不要省略大容量电容器,尽管您可以使用较小的值。
2. 引脚5、6和7提供了死区时间。在引脚6和地之间连接RT,在引脚5和地之间连接CT。RD=22Ω,CT=1nF(代码:102),RT=15kΩ。这给出了振荡器频率:由于振荡器频率为94.6kHz,开关频率为0.5*94.6kHz=47.3kHz,这足够接近我们的目标频率50kHz。如果需要50kHz的精度,可以使用电位器(可变电阻器)与RT串联并调整电位器,或者使用电位器(可变电阻器)作为RT,尽管我更喜欢第一种方法,因为它允许微调频率。
3. 引脚8提供了一个小型软启动电容,避免使用过大的软启动,因为使用CFL时,占空比缓慢增加(因此电压缓慢增加)会导致问题。
4. 引脚10通过上拉电阻上拉至VREF。因此,PWM被禁用并且不运行。但是,当开关打开时,引脚10现在处于接地状态,因此PWM被启用。我们利用了SG3525关机选项(通过引脚10),开关就像一个开/关开关。
5. 引脚2连接至VREF,因此电位为+5.1V(±1%)。转换器的输出通过电阻为56kΩ和1kΩ的分压器连接至引脚1。电压比为57:1。在反馈“平衡”时,引脚1处的电压为5.1V,这也是误差放大器的目标-调整占空比以调整引脚1处的电压,使其等于引脚2处的电压。因此,当引脚1处的电压为5.1V时,输出电压为5.1V*57=290.7V,这足够接近我们的290V目标。如果需要更高的精度,可以将其中一个电阻器替换为电位器或与电位器串联,并调整电位器以提供所需的读数。
6. 引脚1和9之间的电阻和电容的并联组合提供反馈补偿。反馈补偿是一个大话题,这里不详细讨论。
7. 引脚11和14驱动MOSFET。栅极上串联有电阻,用于限制栅极电流。栅极至源极的电阻可确保MOSFET不会意外开启。
总之,参考《EDA设计智汇馆高手速成系列_SABER电路仿真及开关电源设计》,也有SG3525的Saber仿真实例。搬运链接:Using the SG3525 PWM Controller - Explanation and Example: Circuit Diagram / Schematic of Push-Pull Converter
无刷电机控制(九)SVPWM之三相逆变器
SVPWM之三相逆变器
三相逆变器在无刷电机控制系统中扮演着至关重要的角色,它负责将直流电转换为交流电,以驱动无刷电机的三相线圈。以下是对三相逆变器及其在无刷电机控制中的应用的详细解析。
一、三相电压型逆变器结构
三相电压型逆变器的基本结构如图1所示。该逆变器由六个功率开关管(VT1-VT6)组成,这些开关管通常由IGBT(绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)等器件实现。这些开关管通过六路PWM(脉冲宽度调制)信号进行控制,以实现逆变器的正常工作。
在逆变器中,VT1和VT4、VT2和VT5、VT3和VT6分别组成三组桥臂。当某一桥臂的上方开关管(如VT1)导通时,下方开关管(如VT4)关断;反之亦然。通过控制这六个开关管的导通和关断,逆变器可以输出三相电压ua、ub和uc。在FOC(磁场定向控制)算法的控制下,这三相电压呈现为正弦波的形式,从而实现从直流到交流的变换。
二、三相逆变器的工作原理
三相逆变器的工作原理基于PWM调制技术。通过调整PWM信号的占空比,可以控制逆变器输出电压的幅值和相位。在SVPWM(空间矢量脉宽调制)算法中,将逆变器的输出电压看作一个空间矢量,通过控制该矢量的方向和大小,可以实现对无刷电机定子磁链的精确控制。
具体来说,SVPWM算法将逆变器的输出电压空间划分为六个扇区,每个扇区对应一个特定的开关状态组合。在每个扇区内,通过调整两个相邻开关状态的作用时间,可以合成出所需的输出电压矢量。这种调制方式不仅提高了电压利用率,还降低了谐波含量,从而提高了无刷电机的运行性能。
三、三相逆变器的硬件实现
三相逆变器的硬件实现通常包括光耦芯片、驱动芯片、升压电路和大功率NMOS管等组件。这些组件共同构成了逆变器的核心电路,实现了对功率开关管的精确控制。
光耦芯片:用于隔离控制信号和功率电路,防止高压电路对控制电路的干扰。驱动芯片:用于放大控制信号,以驱动大功率NMOS管的导通和关断。升压电路:用于提高直流母线电压,以满足无刷电机对高压输入的需求。大功率NMOS管:作为逆变器的功率开关管,承受高压和大电流,实现直流到交流的变换。以正点原子ATK-PD6010B无刷驱动板为例,其硬件结构如图2所示。该驱动板采用了上述组件,实现了对三相逆变器的精确控制。通过调整PWM信号的占空比和频率,可以实现对无刷电机转速和转矩的精确调节。
四、总结
三相逆变器是无刷电机控制系统中的关键组件之一。它通过PWM调制技术将直流电转换为交流电,以驱动无刷电机的三相线圈。在SVPWM算法的控制下,逆变器可以实现对无刷电机定子磁链的精确控制,从而提高电机的运行性能。硬件实现方面,三相逆变器通常由光耦芯片、驱动芯片、升压电路和大功率NMOS管等组件构成,这些组件共同实现了对功率开关管的精确控制。通过对这些组件的合理设计和优化,可以进一步提高无刷电机控制系统的性能和可靠性。
74LS160的引脚有什么功能?
74LS160引脚图及功能:Pin1-A0:输入信号;Pin2-A1:输入信号;Pin3-A2:输入信号;Pin4-A3:输入信号;Pin5-Cascading Output:连接到另一个相同型号的移位寄存器。
Pin6-CLK:时钟输入信号;Pin7-GND:接地;Pin8-MR:复位输入信号;Pin9-Q输出信号;Pin10-QB:输出信号;Pin11-QC:输出信号;Pin12-QD:输出信号;Pin13-VCC:电源输入信号。
74LS160系列每一个单片、数据选择器/多路复用器都包含逆变器和驱动程序,为和闸提供完全互补的、片上的、二进制译码数据选择。单独的频闪仪输入为每一个四行部分提供。
74LS160IC封装由16个引脚组成,包含一个4位同步计数器电路,无需外部逻辑芯片,即可进行十年计数的mod接线。通过将多个74LS160布线在一起(级联),可以实现更长的计数长度(10的次方)。
引脚的功能
1、脚是一个多功能引脚,各种制式下的第二伴音中频信号可以用不平衡的方式从该脚进入内部的调频解调电路解调,同时它还是块内AVTV转换和PAL、NTSC、SECAM彩色制式转换的控制引脚,输入阻抗大约3.4K。
2、脚是识别输出脚,它以○C门方式输出图像识别信号,当TV方式已经接收到图像电视信号时,该脚对外呈现高阻抗,通过外接上拉电阻就能够得到高电平信号;当没有接收到信号时,该脚呈现低阻抗,输出低电平。
3、脚是APC1滤波器端子,该芯片内部以振荡的方式产生38MHz开关信号完成图像中频信号的解调,产生的开关信号是否准确,就依靠自动相位控制电路(APC)控制。其中该脚上完成APC1误差信号的滤波。
4、脚是APC2滤波器端子,第二级APC电路的滤波端。
逆变器常用芯片有哪些
逆变器芯片:EG8010、EG8025、EG8011、
三相逆变器芯片:EG8030
全桥驱动:EG2126
半桥驱动:EG2113、EG2110、EG2131、EG2104、EG2136、EG2133、EG2134、EG2103、EG2106、EG2181、EG2183、EG3112、EG3113、EG2003、EG3013、EG3014
带SD(使能)功能的半桥驱动:EG27324、EG27325、EG3002、EG3001、EG2130
人体感应:EG0001、EG4002
电源芯片:EG3525、EG1165、EG7500、EG6599、EG3846、EG1611
DC-DC降压芯片:EG1163、EG1187、EG1182、EG1186、EG1185、EG1188
MC34063çç®ä»
ä½éæçµæµç¹æ§ï¼
1ãä½éæçµæµ
2ãçè·¯çµæµéå¶
3ãå¯å®ç°ååæéåçµæºåæ¢å¨
MC34063çåºæ¬ç»æåå¼èå¾åè½(å³å¾ï¼
1èï¼å¼å ³ç®¡T1éçµæå¼åºç«¯ï¼2èï¼å¼å ³ç®¡T1åå°æå¼åºç«¯ï¼
3èï¼å®æ¶çµå®¹ctæ¥çº¿ç«¯ï¼è°èctå¯ä½¿å·¥ä½é¢çå¨100â100kHzèå´å ååï¼
4èï¼çµæºå°ï¼
5èï¼çµåæ¯è¾å¨åç¸è¾å ¥ç«¯ï¼åæ¶ä¹æ¯è¾åºçµååæ ·ç«¯ï¼ä½¿ç¨æ¶åºå¤æ¥ä¸¤ä¸ªç²¾åº¦ä¸ä½äº1%çç²¾å¯çµé»ï¼
6èï¼çµæºç«¯ï¼
7èï¼è´è½½å³°å¼çµæµï¼Ipkï¼åæ ·ç«¯ï¼6ï¼7èä¹é´çµåè¶ è¿300mVæ¶ï¼è¯çå°å¯å¨å é¨è¿æµä¿æ¤åè½ï¼
8èï¼é©±å¨ç®¡T2éçµæå¼åºç«¯ã左徿¯çµåéåå¨
å³å¾æ¯éå转æ¢å¨
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467