Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

光伏电站逆变器开机步骤

发布时间:2025-08-16 23:20:05 人气:



光伏电站逆变器开机步骤

光伏逆变器、储能逆变器、储能变流器、PCS的区别与联系

一、定义与功能

光伏逆变器

定义:光伏逆变器是将光伏设备(如太阳能电池板)产生的直流电(DC)转换为交流电(AC)的设备。

功能:主要作用是通过光伏设备将太阳能转变的直流电逆变为交流电,可供负载使用、并入电网或存储起来。

储能逆变器

定义:储能逆变器通常指用于储能系统中的逆变器,它能够实现直流电与交流电之间的双向转换。

功能:在充电过程中,将交流电转换为直流电存储到蓄电池中;在放电过程中,将蓄电池中的直流电转换为交流电供负载使用或并入电网。

储能变流器(PCS)

定义:储能变流器(Power Conversion System,简称PCS)是储能系统中的核心设备,用于控制蓄电池的充电和放电过程,进行交直流电的转换。

功能:由DC/AC双向变流器、控制单元等构成,能够精确控制蓄电池的充放电,实现交流电与直流电之间的高效转换。

二、分类与应用

光伏逆变器

分类:集中式逆变器、组串式逆变器、微型逆变器。

集中式逆变器:适用于大型地面电站、分布式工商业光伏,一般输出功率大于250KW。

组串式逆变器:适用于大型地面电站、分布式工商业光伏(一般输出功率小于250KW,三相)、户用光伏(一般输出功率小于等于10KW,单相)。

微型逆变器:适用于分布式光伏(一般输出功率小于等于5KW,三相)、户用光伏(一般输出功率小于等于2KW,单相)。

应用:主要用于将光伏系统产生的直流电转换为交流电,供负载使用或并入电网。

储能逆变器

分类:通常根据应用场景和功率大小进行分类,如大储、工商业储、户储等。

应用:在储能系统中,储能逆变器负责将交流电转换为直流电进行充电,以及将直流电转换为交流电进行放电。

储能变流器(PCS)

分类:传统储能变流器、Hybrid储能变流器、一体机。

传统储能变流器:主要使用交流耦合方案,应用场景主要是大储。

Hybrid储能变流器:主要采用直流耦合方案,应用场景主要是户储。

一体机:储能变流器与电池组的集成产品,便于安装和维护。

应用:储能变流器广泛应用于各种储能系统,如地面电站、独立储能电站、工商业储能、户用储能等。

三、联系与区别

联系

功能相似:光伏逆变器、储能逆变器、储能变流器(PCS)都涉及直流电与交流电之间的转换。

应用场景重叠:在某些应用场景下,如户用光伏和户用储能,这些设备可能同时存在并协同工作。

区别

主要功能:光伏逆变器主要用于将光伏系统产生的直流电转换为交流电;储能逆变器则实现交流电与直流电之间的双向转换;储能变流器(PCS)则更侧重于控制蓄电池的充放电过程,实现高效、精确的交直流电转换。

应用场景:光伏逆变器主要应用于光伏系统;储能逆变器主要应用于储能系统;储能变流器(PCS)则广泛应用于各种储能系统,包括地面电站、独立储能电站、工商业储能、户用储能等。

分类与功率:三者根据应用场景和功率大小有不同的分类和功率范围。

综上所述,光伏逆变器、储能逆变器、储能变流器(PCS)在定义、功能、分类与应用等方面存在明显的区别与联系。了解这些区别与联系有助于更好地理解和应用这些设备,以满足不同场景下的需求。

光伏电站逆变器效率测试项目详解

光伏电站逆变器效率测试项目详解

逆变器效率测试是光伏电站逆变器测试中的关键项目,它直接关系到光伏系统的能量转换效率和整体性能。以下是对逆变器效率测试项目的详细解析:

一、逆变器效率的定义

逆变器的效率是指逆变器输出的交流电功率与输入的直流电功率之比,通常以百分比表示。高效率的逆变器能够减少能量在转换过程中的损失,从而提高光伏系统的整体发电效率。

二、逆变器效率测试的目的

评估逆变器性能:通过效率测试,可以直观地了解逆变器的能量转换效率,从而评估其性能优劣。优化系统设计:根据测试结果,可以对光伏系统的设计进行优化,选择合适的逆变器以提高系统效率。故障排查与预防:效率异常可能是逆变器故障的前兆,通过定期测试可以及时发现并处理潜在问题。

三、逆变器效率测试的方法

准备测试设备:包括功率分析仪(用于测量输入和输出功率)、负载设备(用于模拟不同负载条件)、温度计(用于监测逆变器温度)等。

连接逆变器与测试设备:确保逆变器与测试设备之间的连接正确无误,避免测试误差。

设置测试条件:根据逆变器的额定参数和光伏系统的实际情况,设置合适的测试条件,如输入电压、负载大小等。

进行负载测试:通过改变负载大小,模拟不同工况下的逆变器运行状态,并记录相应的输入和输出功率。

计算效率值:根据记录的输入和输出功率数据,计算逆变器的效率值。通常,需要在多个负载点下进行测试,并取平均值作为最终结果。

考虑MPPT功能:对于具有最大功率点跟踪(MPPT)功能的逆变器,还需要测试其在不同光照条件下的效率表现,以评估MPPT功能的实际效果。

四、逆变器效率测试中的注意事项

确保测试环境的一致性:测试过程中应保持环境温度、湿度等条件的一致性,以避免外界因素对测试结果的影响。

准确测量输入和输出功率:使用高精度的功率分析仪进行测量,确保测试结果的准确性。

注意逆变器的散热情况:逆变器在运行过程中会产生热量,如果散热不良会影响其效率表现。因此,在测试过程中应关注逆变器的温度变化情况,并采取必要的散热措施。

记录测试数据:详细记录测试过程中的各项数据,包括输入电压、输出电压、输出电流、功率因数、效率值等,以便后续分析和处理。

五、逆变器效率测试的结果分析

对比额定效率:将测试得到的效率值与逆变器的额定效率进行对比,分析是否存在偏差及偏差的原因。

分析效率变化趋势:观察不同负载点下的效率变化趋势,分析逆变器在不同工况下的性能表现。

评估MPPT功能效果:对于具有MPPT功能的逆变器,还需评估其在不同光照条件下的效率提升效果。

提出改进建议:根据测试结果和分析结果,提出针对性的改进建议,如优化逆变器设计、改进散热措施等。

六、相关展示

(注:此为逆变器测试设备连接示意图,仅供参考。)(注:此为逆变器温度测试现场图,展示了测试人员在逆变器周围放置温度计进行温度监测的情景。)

综上所述,逆变器效率测试是光伏电站逆变器测试中的重要项目之一。通过科学的测试方法和严谨的分析流程,可以准确评估逆变器的性能表现,为光伏系统的优化设计和稳定运行提供有力支持。

大型光伏电站每组出线进逆变器怎么接

通常情况下,大型光伏电站的组串汇流后,会依次通过汇流箱、直流配电柜、逆变器和交流配电柜。比如一个500千瓦的电站,可以被划分为两个250千瓦的子电站,每个子电站配备一台250千瓦的逆变器。交流配电柜则需要配置为500千瓦,以匹配整个电站的输出。

在组件选择上,我们采用了250瓦的组件,因此250千瓦的子电站需要1000块这样的组件。每块250瓦的组件在正常工作电压下约为30伏,串联25块组件,总电压达到750伏,这在逆变器的最大跟踪功率点(Maximum Power Point Tracking, MTTP)范围内是合适的。

对于1000块组件,总共可以串联40串,我们选择10进一出的汇流箱进行组串汇流,这样需要4个这样的汇流箱。随后,这些汇流后的直流电将通过直流配电柜,进入逆变器进行转换,最终输出交流电,接入交流配电柜。

在这个过程中,每一步的选择和配置都是至关重要的,需要综合考虑系统电压、组件数量、汇流箱容量以及逆变器和配电柜的匹配等因素,确保整个电站的高效运行。

光伏逆变器主要功能和分类

光伏逆变器主要功能和分类

主要功能

直流转交流功能

光伏逆变器是逆变装置的核心,其核心部件是逆变开关电路。逆变器通过电力电子开关的导通与关断,将光伏组件产生的直流电转换为交流电,以供家庭、企业或电网使用。

自动运行和停机功能

逆变器具有智能控制功能,能够根据光伏阵列的输出功率自动运行和停机。当太阳辐射强度增强,光伏阵列输出功率达到逆变器工作所需的最小值时,逆变器自动开始运行;而当太阳辐射减弱,光伏阵列输出功率减小至接近0时,逆变器则自动进入待机状态。

防孤岛效应功能

逆变器内置防孤岛保护电路,能够实时侦测电网的电压、频率等信息,并与预置值进行比较。当电网出现异常停电时,逆变器能够迅速断开与电网的连接,防止孤岛效应的发生,确保电网和光伏系统的安全。

最大功率点跟踪控制功能(MPPT)

MPPT技术是逆变器的核心关键技术之一。逆变器能够实时追踪光伏组件的最大输出功率点,通过智能调节工作点电压或电流,使光伏系统始终运行在最大功率点附近,从而最大化提升发电量。

智能组串监测

逆变器在原有MPPT监测的基础上,实现了智能的组串逐串监测。这种监测方式能够精确到每一个支路组串的电压和电流,用户可以清晰地查看每一路组串的实时运行数据,便于及时发现和处理问题。

智能I-V曲线扫描诊断

逆变器具备智能I-V曲线扫描诊断功能,能够实时监测光伏组件的I/V曲线。当组件发生阴影遮挡、损坏或接触不良等情况时,I-V曲线会发生明显变化,逆变器能够及时发现并报警,提醒用户进行维护。

智能防PID效应

PID效应是光伏组件在长时间工作后性能逐渐衰减的一种情况。逆变器通过智能风冷和温度监测等技术手段,有效防止PID效应的发生,延长光伏组件的使用寿命。

智能恢复并网功能

逆变器具备智能恢复并网功能,能够在检测到各项运行条件正常后自动恢复并网输出,无需人工重新调试或重启。

智能无功补偿

逆变器在发电过程中能够智能地进行无功补偿,确保功率因数达标,避免电网公司惩罚性的收取力调电费。

分类

光伏逆变器根据不同的分类标准可以分为多种类型:

按输出波形分类

方波逆变器:输出波形为方波,适用于阻性负载。

正弦波逆变器:输出波形为正弦波,与市电波形相同,适用于各种负载。

按功率大小分类

小功率逆变器:功率在几百瓦至几千瓦之间,适用于家庭或小型光伏系统。

大功率逆变器:功率在几十千瓦至几百千瓦之间,适用于大型光伏电站或工业应用。

按应用场景分类

离网逆变器:用于离网光伏系统,为无电网覆盖地区提供电力。

并网逆变器:用于并网光伏系统,将产生的电力送入电网。

按技术类型分类

集中式逆变器:功率较大,通常用于大型光伏电站,将多个光伏组件产生的直流电集中转换为交流电。

组串式逆变器:功率较小,每个逆变器对应一个光伏组串,能够实现更精细的MPPT控制和组串监测。

综上所述,光伏逆变器作为光伏发电系统中的重要组成部分,具有多种功能和分类方式。用户在选择逆变器时,应根据具体的应用场景和需求进行综合考虑。

光伏知识必备│光伏逆变器的电路结构、原理及故障处理

逆变器是光伏系统中的核心部件,负责将光伏板产生的直流电转换为交流电以供电网使用或直接接入负载。其电路结构主要包括输入电路、输出电路、主逆变开关电路、控制电路、辅助电路、保护电路等关键部分。

输入电路提供给逆变器稳定的直流工作电压,确保逆变电路的正常运行。

主逆变电路是逆变器的中心,通过电力电子开关的导通与关断,实现直流电到交流电的转换。根据隔离方式的不同,主逆变电路分为隔离式和非隔离式两种。

输出电路则对主逆变电路输出的交流电进行修正、补偿和调理,以达到符合电网标准的高质量交流电。

控制电路产生一系列控制脉冲,控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。

辅助电路将输入电压转换为适合控制电路工作的直流电压,内部包含各种检测电路,确保逆变器稳定运行。

保护电路则针对逆变器的运行安全进行监控,包括输入过欠压保护、输出过欠压保护、过流保护、短路保护、孤岛保护等,确保逆变器在异常情况下的安全。

逆变器将直流电转换为交流电的过程可以通过半导体功率开关器件在控制电路的作用下以极快的速度进行,实现直流电切断,转换为交流电。

三相并网型逆变器电路原理主要由主电路和微处理器电路两部分组成。主电路负责DC-DC-AC变换和逆变过程,微处理器电路则完成系统并网的控制过程,确保逆变器输出的交流电压值、波形、相位等维持在规定的范围内。

在华为逆变器的常见故障处理方面,针对绝缘阻抗低、母线电压低、漏电流故障、直流过压保护、逆变器开机无响应、电网故障等问题,采用排除法逐步检测,找出问题所在并进行针对性处理。例如,针对绝缘阻抗低的问题,可通过检测直流接头是否有水浸短接支架或者烧熔短接支架,以及检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。针对电网故障,需提前勘察电网健康情况,与逆变器厂商沟通,确保项目设计在合理范围内,避免出现电压过高或过低,过/欠频等问题,通过正确选择并网并严抓电站建设质量,以解决电网相关问题。

光伏电站逆变器着火后如何处理

光伏电站逆变器着火后的处理方法主要包括以下步骤

立即切断电源

一旦发现光伏电站逆变器着火,首要任务是立即切断光伏电站的电源,停止逆变器的运行,以防止火势继续蔓延,并保障人员和设备安全。

进行灭火

使用干粉灭火器或二氧化碳灭火器对着火点进行喷射。

在灭火过程中,注意用水进行降温,避免过度燃烧导致火势扩大。

特别注意防止逆变器内部的电容器、继电器等部件因高温而爆炸,造成二次伤害。

检查和更换损坏部件

灭火完成后,对逆变器进行详细的检查,特别是电容器、继电器等关键部件。

如有部件损坏,应及时更换以确保逆变器的正常运行。

同时,对电站的其他设备进行检查,确保整个系统的安全稳定。

加强预防和保养工作

增加设备的排查频率,及时发现并处理潜在的安全隐患。

对老化的电缆和设备进行必要的维修或更换,以降低火灾风险。

加强人员的培训和教育,提高运行人员的运行水平和安全意识。

通过以上步骤,可以迅速、准确和有效地处理光伏电站逆变器着火的情况,确保人员和设备的安全以及电站的正常运行。同时,加强预防和保养工作也是防止类似事故再次发生的关键。

光伏电站如何匹配逆变器才正确?

1. 在选择光伏电站的逆变器时,正确匹配是关键。电站设计容量为A(MW)时,可通过计算电池板扩容到B(MW)时的投资性价比来确定最佳容配比,即K=B/A。

2. 当逆变器负载超过其标称功率的100%、105%、110%时,最优容量配比分别为1.05、1.1、1.15。在电站设计时,应考虑这一最佳容配比。

3. 光伏电站的最优容量配置比还受到多种因素的影响,包括太阳能光照资源、电站效率、逆变器发电能力、电站综合单价和光伏组件单价等。

4. 用户和系统安装商在安装光伏电站时,如果能够考虑到这一容配比,将显著提高发电量。

5. 国家发展和改革委员会能源研究所研究员王斯成呼吁对“光伏-逆变器容配比”进行调整。

6. 根据《GB50797-2012:光伏发电站设计规范》,逆变器的配置容量应与光伏方阵的安装容量相匹配,确保逆变器允许的最大直流输入功率不小于光伏方阵的实际最大直流输出功率。

7. 在国际上,光伏发电系统的交流容量通常定义为光伏系统额定输出或合同约定的最大功率,单位为MW。

8. 国内标准在光伏电站的功率比方面还处于发展阶段。光伏电站通常设计成高光伏-逆变器功率比以降低度电成本。

9. 适度提高光伏-逆变器容配比是光伏系统设计的重要技术创新,自2012年以来被光伏界普遍接受。例如,美国FirstSolar的光电站容配比通常选在1.4:1.0。

10. 基于平均神改化度电成本最低的原则,最优的光伏-逆变器容配比均大于1:1。因此,适当提升光伏组件容量(也称组件超配)有助于提升系统整体效益。

11. 目前,许多电站采用组件超配的方法来提高逆变器的运行效率和电站收益。

光伏电站AGC调试报告(测试)

光伏电站AGC调试报告概述如下

1. 测试对象与调试单位 测试对象:中广核30MW光伏电站的有功功率自动调节系统。 调试单位:南瑞继保公司,调试人员及见证人信息已记录。

2. AGC系统简介 系统安装:该系统由南瑞继保公司安装于青海共和的30MW光伏电站。 系统组成:包括60台合肥阳光电源公司生产的0.55MW光伏逆变器,通过35kV送出线路与电网相连。AGC系统由远动机、上位机和规约支持层组成,用于实时监控和调节光伏电站的有功功率。

3. AGC控制流程 调节方式:AGC通过循环扫描方式,依据调度计划与实际值差异进行智能调节。 控制原理:包括逆变器经济运行范围阈值控制和启动/停止逆变器控制,确保有功功率的精确调节。通过网络下发指令,实现动态跟踪调节。

4. 测试目的与结果 测试目标:验证数据传输的准确性、通信连接的稳定性、计划曲线的接收能力以及AGC系统的执行性能。 调试结果:AGC系统能够准确接收调度指令,及时响应并执行,确保光伏电站功率与调度目标一致。测试结果显示系统性能符合预期。

5. 全站联调结论 闭环测试:经过与调度主站的闭环测试,验证了AGC系统的稳定性和准确性。 调节能力:AGC系统表现出稳定、准确的调节能力,能够有效跟踪和响应省调下发的调令。 功能验证:证明AGC系统功能正常且性能可靠,光伏电站功率能够在目标值附近波动,满足调度要求。

光伏逆变器的电路结构、原理及故障处理!

光伏逆变器的电路结构、原理及故障处理一、光伏逆变器的电路结构

光伏逆变器的电路结构主要由以下几部分组成:

输入电路:为主逆变电路提供可确保其正常工作的直流工作电压。主逆变电路:是逆变装置的核心,通过电力电子开关的导通与关断,完成逆变的功能。主逆变电路分为隔离式和非隔离式两种。输出电路:对主逆变电路输出的交流电波形、频率、电压、电流的幅值和相位等进行修正、补偿和调理,以确保输出电能的稳定性和质量。控制电路:为主逆变电路提供一系列的控制脉冲,以控制逆变开关器件的导通与关断,从而配合主逆变电路完成逆变功能。辅助电路:将输入电压变换成适合控制电路工作的直流电压,并包含各自的检测电路,用于监测和反馈系统状态。保护电路:主要包括输入过欠压保护、输出过欠压保护、过流保护、短路保护、孤岛保护等,以确保逆变器在异常情况下能够安全停机,保护设备和人身安全。二、光伏逆变器的工作原理

光伏逆变器的工作原理是将直流电(DC)转换为交流电(AC)。这一过程主要通过半导体功率开关器件(如IGBT、MOSFET等)在控制电路的作用下以高速开关(通常为1/100s的速度)来实现。当开关器件导通时,直流电源向负载供电;当开关器件关断时,直流电源被切断。通过控制开关器件的导通与关断时间,可以产生所需的交流电波形。

以三相并网型逆变器为例,其电路原理通常涉及DC-DC-AC的变换过程。首先,直流电经过DC-DC变换器升压到合适的电压等级;然后,经过主逆变电路转换为交流电;最后,通过滤波器和输出电路对交流电进行修正和调理,以满足并网要求。同时,微处理器电路负责实时监测电压、相位等参数,并进行电流相位反馈控制和光伏方阵最大功率跟踪等操作,以确保逆变器输出的交流电能够稳定、可靠地并网。

三、光伏逆变器的故障处理

光伏逆变器在运行过程中可能会遇到各种故障,以下是一些常见故障及其处理方法:

绝缘阻抗低

使用排除法,将逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串。

找到问题组串后,重点检查直流接头是否有水浸短接支架或烧熔短接支架,以及组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。

母线电压低

如果出现在早/晚时段,则为正常现象,因为逆变器在尝试极限发电条件。

如果出现在正常白天,则使用排除法进行检测,方法与处理绝缘阻抗低类似。

漏电流故障

根本原因是安装质量问题,如选择错误的安装地点、使用低质量的设备等。

故障点可能包括低质量的直流接头、组件、并网设备等。

可以通过洒粉找出点并做好绝缘工作解决问题;如果是材料本身问题,则只能更换材料。

直流过压保护

随着组件功率等级和开路电压的上升,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。

可以调整逆变器的过压保护阈值或优化组件的选型来解决问题。

逆变器开机无响应

确保直流输入线路没有接反,特别是压线端子没有防呆效果时,需要仔细阅读逆变器说明书并确保正负极后再压接。

逆变器内置反接短路保护,在恢复正常接线后应能正常启动。

电网故障

包括电网过压、欠压、过/欠频、无电压、缺相等问题。

解决方法包括找供电局协调电压、正确选择并网并严抓电站建设质量、检查并网线路和缺相电路等。

展示

以上内容涵盖了光伏逆变器的电路结构、工作原理以及常见故障处理方法,希望对解决您的问题有所帮助。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言