Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器有哪些拓扑优点

发布时间:2025-08-08 09:50:08 人气:



heric拓扑的优势,为什么单项光伏逆变器通常选用heric拓扑?

非隔离型单相并网逆变器在小功率光伏发电系统中广泛应用,因其体积小、效率高等特点。然而,在并网系统中,由于缺少变压器,光伏电池板与电网间存在多处分布电容,功率器件在高频开关时会导致共模电流的产生。为了保障人员和设备安全,必须对地漏电流进行有效抑制。针对此问题,常见的优化策略有两种:一是采用H桥拓扑并结合双极性PWM调制,可以有效抑制共模电流,但存在开关损耗较大及输出电压幅值跳变的问题;二是提出H5、H6等改进型拓扑,分别在效率与共模电流抑制之间寻求平衡,但它们在成本或效率上存在局限。Heribert Schmidt等学者提出了一种新颖的拓扑结构,即Heric拓扑,仅需增加两个功率器件,即可实现输出共模电压的相对稳定,同时提高整体效率,从而被广泛应用在单相并网逆变器中。

Heric电路通过增加T5/D5与T6/D6两个功率器件,滤波电感在续流过程中提供了双向电流通路,从而控制输出共模电压相对稳定。这种拓扑结构下,功率因数为1时,T5与T6在工频下进行开关操作,正半周期T1与T4进行高频开关,关断时通过T6与D5进行续流,负半周期则同理。T2、T3与T5、D6进行换流,保证逆变器AC端口的共模电压输出相对稳定,基本维持在VDC/2。

在Heric电路需要向电网注入无功电流时,T5、T6则需要在输出电压电流反向区间内分别进行高频开关,以适应输出滞后无功电流的情形。例如,当输出电压V大于0而电流I小于0(规定电流流出H桥为正)时,T1-T4均关断,T5导通,电感电流通过T5与D6进行续流,T5关断时电感电流通过D1与D4流通。同样地,当输出电压V小于0而电流I大于0时,T6、D5与D2、D3进行换流。

在单相户用光伏逆变器的应用中,追求小体积和低噪音是产品设计的关键目标之一,这不仅降低了设备的安装要求,也为用户在运行期间提供了更加宁静的环境。因此,较高的开关频率是功率半导体器件的重要需求之一,而更高的效率和更好的可靠性则是产品设计中不可或缺的特性,有助于为客户提供长期稳定的经济效益。在单相光伏应用中,电网电压通常为220/230VAC,逆变器的母线电压在350-400VDC左右,因此,适合应用高效高速的650V IGBT,以满足这些场景中的需求。

英飞凌新一代650V TRENCHSTOP™ IGBT7 H7产品采用最新的微沟槽栅技术,相比前代产品整体损耗可减少39%,同时配备新一代全电流的发射极控制EC7续流二极管,具有更好的EMI表现。此外,该器件还具备出色的防潮性能,可在恶劣环境中可靠运行,且已通过JEDEC 47/20/22的相关测试,特别是HV-H3TRB测试,符合工业应用标准,非常适合户外应用的户用单相光储逆变器。

对于5kW、8kW至10kW功率等级的Heric单相光伏逆变器,可选用相应的IKWH40N65EH7和IKWH75N65EH7产品,DC-AC级转换效率均可达到98.5%,而T5/T6、D5/D6的损耗较小。在成本优化方面,根据具体需求考虑选择合适大小的器件。此外,英飞凌还提供了一站式的解决方案,包括驱动IC(如EiceDRIVER™ X3 Compact、2EDi family双通道隔离驱动系列)、微控制器产品(如XMC™、PSoC™系列)、以及用于测量和控制的XENSIV™系列电流传感器和AIROC™系列蓝牙wifi产品,以满足不同应用需求。

Heric拓扑的优势,为什么单项光伏逆变器通常选用Heric拓扑?

1. Heric拓扑为何在单项光伏逆变器设计中备受青睐?

2. 美国UL标准如何影响光伏逆变器的全球市场?

3. UL 62109-1的实施为逆变器制造商带来了哪些新机遇?

4. 欧洲市场对光伏逆变器有哪些更为严格的标准和要求?

5. 不同国家如何根据自身需求采纳和制定相关标准?

6. Heric拓扑在光伏逆变器中的应用有哪些显著优势?

7. 为何采用Heric拓扑的光伏逆变器能一次认证,多国通用?

8. ATS全测检测如何帮助制造商简化全球认证流程?

9. 为何选择ATS全测检测作为逆变器认证的服务提供商?

10. 如何获取关于Heric拓扑和全球认证的更多信息和帮助?

光伏漫谈4- 逆变器拓扑结构

光伏逆变器拓扑结构概述

光伏逆变器作为光伏发电系统中最关键的设备之一,其拓扑结构的选择对于系统的性能、效率和成本具有重要影响。根据功率等级、应用场景以及隔离要求的不同,逆变器拓扑结构呈现出多样性。以下是对几种常见光伏逆变器拓扑结构的详细解析:

一、工频隔离逆变器

工频隔离逆变器通过工频50Hz变压器实现源边和副边的功率传输。这种拓扑结构最为简单,仅需整流桥、滤波器和工频变压器即可。然而,由于50Hz工频变压器的体积较大,导致整个逆变器系统的体积和成本增加,因此在实际应用中很少使用。

二、高频隔离逆变器

高频隔离逆变器在微型逆变器中使用较多,为了降低体积和重量,通常采用高频隔离的拓扑结构。以下是三种常见的高频隔离微型逆变器:

带有直流母线的隔离全桥逆变器

这种拓扑结构具有中间直流母线,变压器源边的整流与副边的逆变器可以解耦分别调整。然而,该架构使用的功率器件较多,且需要高压直流母线电容进行整流滤波,增加了系统的复杂性和成本。

伪直流母线的交错反激逆变器

伪直流母线拓扑实际上没有直流母线,通过交错反激结构将直流信号变换成正半周期的正弦波,再通过可控硅调整成全周期正弦波。该拓扑节省了大量高压电容,降低了系统成本,但效率相对较低,适用于小功率微型逆变器。

不含直流母线的串联谐振逆变器

这种拓扑结构同样不需要直流母线和高压电容滤波,变压器源边工作在零电压开通状态,效率较高。该结构不仅适用于光伏逆变器,还可用于户用储能逆变器。

三、非隔离的逆变器拓扑

非隔离逆变器拓扑结构省去了变压器,因此效率更高、体积更小、成本更低。然而,由于没有变压器隔离,可能存在零点偏移和直流分量等问题,需要采取相应的措施进行抑制。以下是两种常见的非隔离逆变器拓扑:

带有MPPT升压的2电平非隔离逆变器拓扑

这种拓扑结构通过带有单路或多路MPPT并联到直流母线,再通过2电平逆变结构实现组串式逆变器。为了消除直流分量,可以采用交流或直流旁路方式。

带有旁路二极管的BOOST双模式非隔离逆变器拓扑

该结构设计巧妙,BOOST电路不仅将PV输入升压成DC电压,还直接升压到工频信号。通过BOOST和逆变两种模式交替工作,可以实现完整的正弦输出。

四、组串式逆变器NPC拓扑

组串式逆变器在光伏系统中应用广泛,NPC三电平逆变器是其中一种常见的拓扑结构。NPC三电平逆变器具有效率高、谐波小等优点。以下是三种NPC三电平逆变器的变体:

I型NPC三电平逆变拓扑

I型NPC三电平拓扑结构相对简单,但存在内外管开关损耗不平衡的问题。

ANPC三电平逆变拓扑

ANPC三电平拓扑通过将两个二极管更换成IGBT,实现了内外管开关损耗的平衡。然而,该拓扑控制较复杂,开关管也较多,系统成本和体积较大。

T型NPC逆变器拓扑

T型三电平拓扑同样使用4个IGBT功率管,但其中处于中性点的是一对背靠背连接的IGBT。该拓扑结构开关损耗平衡,效率高,但功率管的耐压需要与母线电压相同,适用于低压系统或需要更高耐压功率管的实现。

总结而言,光伏逆变器的拓扑结构多种多样,每种拓扑结构都有其独特的优点和适用场景。随着功率器件开关特性和耐压的提升,以及学术界研究的深入,未来仍将有更多逆变器拓扑结构衍生出来,进一步提升应用效率、降低体积和成本。

单相小功率逆变器拓扑

单相小功率逆变器拓扑主要包括以下几种

H4单相全桥拓扑

这是传统小功率逆变器常用的拓扑结构。但存在漏电流问题,需要通过改变调制策略或增加额外电路来解决。

H5拓扑

由德国SMA公司推出,从根本上解决了漏电流问题。是一种改进型的拓扑结构,相比H4具有更高的效率和更低的漏电流。

H6拓扑

在抑制共模电流方面表现出色,相比H4拓扑具有优势。采用单极性SPWM调制,产生高频SPWM输出波形。通过6个开关管驱动波形,实现高频和低频开关管的优化配置,以减少损耗和提高效率。

双Buck拓扑

另一种解决漏电流的拓扑结构。在提高效率方面也有很好的表现。

总结: 单相小功率逆变器拓扑的选择需要综合考虑效率、漏电流抑制、共模电流抑制以及成本等因素。 H5、H6和双Buck拓扑是近年来在解决漏电流和共模电流抑制方面表现较为出色的拓扑结构。 在实际应用中,应根据具体需求选择合适的拓扑结构,并通过优化控制策略和合理配置电路组件来进一步提升逆变器的性能和可靠性。

三电平逆变有什么优势?

英飞凌工程师为您解答:三电平逆变器拓扑的优势

随着对逆变器的功率密度、效率、输出波形质量等性能要求的提升,中点钳位型三电平拓扑逆变器已经广泛应用于光伏、储能、UPS、APF等场合。典型的三电平拓扑有二极管型NPC、Conergy NPC、有源NPC。

相比于传统的两电平逆变器,三电平逆变器具有以下优势:

损耗减小,开关频率提升,系统成本降低:如NPC1拓扑中开关器件的电压可减小为原来的一半,大幅降低器件开关损耗,可通过提高母线电压减小输出端的电流,减少输出线缆成本。

器件可靠性提升:在同样电压等级的系统中,三电平拓扑中器件承受的阻断电压降低,提升器件的可靠性。

改善电磁干扰EMI:由于开关过程中器件的dv/dt大幅降低,系统电磁干扰得到改善。

当然,三电平拓扑也存在一些劣势,如器件成本增加、控制算法复杂度提升、损耗分布不均衡和中点电位波动等问题。但得益于其独特优势,三电平拓扑在众多场合得到广泛使用。

常见三电平拓扑介绍

NPC 1

电流路径:蓝绿色线条为导通电流路径,紫色线条为对应的零电平换流路径。功率因数为+1对应①和②两种模态,功率因数为-1对应③和④两种模态。

损耗分布:以F3L225R12W3H3器件为例,在逆变工况时,NPC1的损耗主要集中在T1/T4管,包括导通损耗和开关损耗;在整流工况下,损耗主要集中在D1/D4管和T2/T3管。

NPC 2

电流路径:在NPC2拓扑中,用一对共射极或共集电极的IGBT和反并联二极管代替NPC1二极管钳位的功能,T1/T4管承受全母线电压,T2/T3管承受半母线电压。

损耗分布:在NPC2拓扑中T1/T4为高压器件,开关损耗较大,但由于电流路径上的开关器件数量减少,导通损耗更小,因此NPC2拓扑在中低开关频率的系统中效率更优。

ANPC

电流路径:ANPC拓扑通过拓展两条零电平换流路径,通过对零电平换流路径的选择和控制可以实现更均衡的损耗分布和更小的换流回路杂感。不同调制算法会产生不同的损耗分布。

英飞凌提供的产品

英飞凌提供适用于不同逆变器设计需求的功率器件,包括家用、商用和电站级逆变器。产品包含OptiMOS™、CoolMOS™、CoolSiC™ MOSFET、IGBT、Easy 1B/2B模块、功能性集成型产品EiceDRIVER™栅极驱动器IC和XMC™控制器等。

三电平Easy 1B/2B模块

Easy B系列模块提供600V、650V和1200V电压以及6A至200A电流。模块涵盖PIM和三相两电平全桥配置,以及桥式整流器、半桥、H桥式、三电平全桥和三电平单相模块。模块采用灵活网格引脚与新型IGBT芯片技术相结合,易于集成PIM配置,并采用新型TRENCHSTOP™ IGBT7技术,在Easy 1B封装中集成25A PIM。

更多信息

若您想寻找更多应用、产品信息或想联系我们购买产品,请点击此处填写您的个人信息及需求,我们将安排专人后续跟进。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言