发布时间:2025-08-01 07:50:55 人气:
T型三电平逆变器工作原理
T型三电平逆变器工作原理
T型三电平逆变器是一种采用T型拓扑结构的逆变器,能够输出三种电平(正电平、零电平和负电平),从而提高了输出电压的谐波性能和效率。以下是T型三电平逆变器工作原理的详细解释:
一、单相T型三电平拓扑结构
T型三电平逆变器由4个IGBT(绝缘栅双极型晶体管)、4个二极管、两个电容C1和C2,以及一个电感L构成。假设C1和C2的电压差都相等,均为Vdc。IGBT和二极管的状态用1和0分别表示,1表示开通,0表示关断。
二、开关状态与输出电压
T型三电平逆变器的开关状态由T1、T2、T3、T4四个IGBT的开通与关断组合决定。将这四个状态组成的二进制数用16进制表示,可以得到逆变器的开关状态。例如,当T1、T2、T3、T4分别为1、1、0、0时,开关状态的二进制数为1100,用16进制数表示为C。
T型三电平逆变器有三种稳定的模态(调制后输出的结果),分别为C、6、3。对应的输出电压分别为:
模态C(T1、T2开通,T3、T4关断):输出电压为Vdc。模态6(T2、T3开通,T1、T4关断):输出电压为0。模态3(T3、T4开通,T1、T2关断):输出电压为-Vdc。此外,考虑死区后,还存在另外两种状态,分别为4和2,这两种状态下输出电压为高阻。
三、输出电压转换与IGBT控制逻辑
T型三电平逆变器在输出电压转换过程中,会经历不同的开关状态。例如,从Vdc转换到0,再到-Vdc,最后回到0和Vdc,这个过程中会涉及多个开关状态的切换。IGBT的控制逻辑需要确保这些切换过程平稳且高效。
IGBT的控制转换逻辑图展示了在不同输出电压下,各个IGBT的开通与关断状态。这个逻辑图是实现T型三电平逆变器精确控制的关键。
四、换流过程与电流路径
在T型三电平逆变器中,换流过程是指从一个开关状态切换到另一个开关状态的过程。这个过程中,IGBT的C-E电压与输出电压的关系以及电流路径都会发生变化。
以输出Vdc到0的换流过程为例,当开关状态从C(1100)切换到4(0100)时,T1会关断,电流会通过D3续流,同时T2保持开通状态。在这个过程中,T1的Vce两端会产生尖峰电压,这是由于换流引起的。随着开关状态的进一步切换,电流路径会发生变化,直到达到新的稳态。
五、注意事项
电压尖峰:在换流过程中,IGBT在关断时可能会产生电压尖峰。这些尖峰电压可能会对IGBT造成损害,因此需要采取适当的保护措施。二极管反向恢复:在换流过程中,二极管可能会经历反向恢复过程。这个过程会产生峰值功率,对二极管的性能产生影响。特别是低阻断电压的二极管,在反向恢复时产生的峰值功率会相对较大,需要特别注意。六、展示
以下是T型三电平逆变器工作原理相关的展示:
(注:以上仅为示例,实际可能因来源和格式而有所不同。)
综上所述,T型三电平逆变器通过精确控制IGBT的开通与关断状态,实现了输出电压的三种电平输出。在换流过程中,需要注意电压尖峰和二极管的反向恢复问题,以确保逆变器的稳定运行。
双向PCS储能变流器(一)基于I型NPC三电平逆变器拓扑的单级式PCS MATLAB/Simulink仿真实现
在电网系统中,电力负荷周期性变化,峰谷差大,为满足高峰负荷需求,电网公司需投资大量输配电设备,导致设备利用率低,整体负荷率下降。分布式发电和智能电网的大规模应用推动了储能技术的发展,储能系统可平抑可再生能源发电并网功率波动,缓解高峰负荷需求,起到“削峰填谷”作用,维持微电网功率平衡,改善电能质量,提高电网设备利用率,减少电网建设投资,降低运营成本。能量转换系统(PCS),即储能变流器,作为储能载体与电网的接口装置,起着能量双向交换的重要作用。
PCS电路拓扑分为单级式和双级式两种。单级式PCS仅含有一个双向DC/AC变流器,电路拓扑结构和控制简单,效率较高,但储能单元容量选择不够灵活,电池需要串并联成高压大电流电池组后,才能接入直流母线。
双级式PCS拓扑相对于单级式拓扑多了一个前级的双向DC/DC变流器。双级式电路拓扑结构直流侧接入电池电压范围较宽,电池组配置更加灵活,但由于多了一个双向DC/DC环节,结构和控制系统较复杂,系统效率降低。
不管是单级式PCS还是双级式PCS,都需要双向DC/AC变流器。双向DC/AC变流器可以采用两电平或三电平变流器拓扑结构。相比于两电平变流器,三电平变流器具有以下优点:
(1)桥臂上单个功率开关管承受的电压仅为直流母线电压的一半,降低了器件耐压等级的要求,从技术和经济方面都是可实现的,同时避免了器件串联时的动态均压问题,保证了系统的稳定性和可靠性;
(2)在相同调制频率下,每个开关管的开关频率是两电平的一半,交流侧电流谐波含量低,直流电压纹波小,器件损耗和应力小,电磁干扰小,减小了旋转用电设备的振荡,提高了系统的性能。
下文展示了一个50kW双向单级式PCS的MATLAB/Simulink仿真案例,主电路原理如下图,双向DC/AC变流器采用I型二极管中点钳位(Neutral Point Clamped, NPC)三电平逆变器,实现DC/AC逆变并网和AC/DC整流能量双向流动的功能。
三相电网电压3AC380V,频率50Hz,直流电压DC800V,储能变流器开关频率10kHz。AC/DC变换时负载功率50kW,DC/AC变换时并网功率P=50kW,Q=25kVar。
电压外环采用PI控制器,PQ控制时计算dq电流参考值。电流内环采用PI控制器,dq电流解耦,电网电压前馈。采用三电平SVPWM空间矢量调制。含中点电位平衡控制。含锁相环(基于单同步旋转坐标系的锁相环SRF-PLL)。控制算法框图如下图。
0-0.5s储能变流器工作在整流AC/DC模式,控制整流输出电压为DC800V,直流负载50kW,单位功率因数运行。0.5-1s储能变流器工作在逆变并网DC/AC模式,采用有功功率无功功率PQ控制,P为50kW,Q为25kVar。仿真结果如下。
基于I型二极管中点钳位(Neutral Point Clamped, NPC)三电平逆变器的双向单级式PCS的MATLAB/Simulink仿真案例,实现了DC/AC逆变并网和AC/DC整流能量双向流动的功能,具备中点电位平衡功能,上电容电压与下电容电压稳态偏差在±5V以内,同时具有较低的电流畸变率,电流THD<1%。
什么是三相三开关三电平逆变器
问题一:三电平是什么意思? 三电平顾名思义就是三种电平:高电平V/2、零电平0V、低电平-V/2
三电平的实质就是开关阀值的问题,就是提供了三种开关状态转换。
三电平的控制技术主要使用在变频器中,三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。
三电平逆变器的主回路结构环节少,虽然为电压源型结构,但易于实现能量回馈。
三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到6KV,所以往往需要采用变通的方法,要么改变电机的电压,要么在输出侧加上升压变压器。这一弱点直接限制了它的广泛应用。这也是这个控制技术很多人不甚了解的最大原因。
对于单元串联多电平型变频器,主要缺点是变流环节复杂,功率元器件数目多,体积稍微大一点,但是在其他的方式不能有效解决国内应用的需要时,在高压器件实际应用的可靠性还不是太高的情况下,它的竞争优势在相当一段时间内至少最近一段时期内,可能还是没有其它更好的替代方法。
三电平电压波形是方波,当然能体现出三种不同的电压了。
变频器的电平你可以百度搜一下电平的解释就知道,这里就不多说了,变频器有单电平(一电平)、高低电平(二电平)、三电平(高低电平、零电平)等控制区别,虽然电平数不同,但是其实质还是开关阀值的状态转换而已,只不过是电路需求的控制数量不同而已。
问题二:多电平比如三电平名称的含义? 首先定义是线电压还是相电压,一般相电压是3电平,线电压就是五电平。电平是指逆变直流侧的直流电压等级,一般是三电平,就是通过开关管的作用出来3个平台,三个平台通过分割形成正弦波。
这个是三电平,正 0 负
这个是五电平,一个是相电压一个是线电压
问题三:三相三开关三电平整流是什么意思 三电平逆变器:1拓扑为在两个电力电子开关器件串联的基础上,中性点加一对箝位二极管的三电平逆变器,又称为中性点箝位型(Neutral Point Clamped,简称NPC)三电平逆变器,所示即为三相三电平NPC逆变器拓扑结构,由两个直流分压电容C1=C2、三相。
问题四:什么是三电平结构 三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。三电平逆变器的主回路结构环定少,虽然为电压源型结构,但易于实现能量回馈。三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到6KV,所以往往需要采用变通的方法,要么改变电机的电压,要么在输出侧加升压变压器。这一弱点限制了它的应用。
问题五:什么是单相三电平逆变器? 当今世界档缒茉嚼丛匠晌人们日常生活和工业生产中的重要能源刀
其质量和指标在不同的情况下有不同的要求。随着交流电机调速技术的逐渐
成熟蹈咝阅艽笕萘康慕涣鞯魉偌际跸缘糜任重要。三电平逆变器由于具有
输出容量大、输出电压高、电流谐波含量小、控制方法成熟简单等优点翟
中高压调速领域得到了广泛的应用。而正弦脉宽调制SPWM捶椒ㄊ侨电
平逆变器的核心技术之一。本文介绍了单相三电平逆变器的结构和基本原
理导捌SPWM控制法的原理挡⒁栽夭ㄍ向SPWM法对三电平逆变器进
行控制。
本文基于MATLAB/SIMULINK对三电平逆变电路建立模型挡⒔行开
环、闭环仿真荡佣分析了逆变器输出电压的谐波含量、电压稳定度。采用
PI调节器设计对逆变器设计了双闭环控制低时对负载能力进行研究。
关键词 三电平逆变器 正弦脉宽调制 MATLAB PI调节器错误蔽凑业
引用源。
问题六:三电平变频器的输出波形是什么样子? 下图是3300V永磁风力发电机用三骸平变流器的电压波形和电流波形,仅供参考!
问题七:三电平逆变器较二电平逆变器的优势是什么? 从实际的角度是因为谐波小,输出不需要很大的滤波器,在传输距离比较远的情况下,可以有很小的电压损失,对后期负载,比如电机冲击比较小,不需要用防护等级高的点击。至于在理论方面的区别肯定有,这个课本上都有。
问题八:三电平pwm变频器具有哪些优点 提升电压应用,输出波形好
波形好,模块耐压低
1电平的变频器是没有的。电平是两个电压之比,以对数来表示,称为相对电平;某电压与选定的标准电压相比较,以对数来表示,称为绝对电平。 在通信、电子等领域,计算放大器的增益、电路的衰耗等,都是输出/输入信号的比较,用电平来表示会有极大...
介绍了西门子采用三电平高压IGBT开发的中压变频器SIMOVERTMV、有源前端技术及应用。 关键词:高压 三电平 有源前端 1、前言 电力电子技术、微电子技术与控制理论的结合,有力地促进了交流变频调速技术的发展。近年来,具有驱动电路和保护功能的...
有过网友的采纳回答,请搜索“三电平是什么意思”即可。
三电平有源电力滤波器技术详解 作者:德州和能工业自动化有限公司 一、二极管箝位三电平技术 二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于..
问题九:三电平电路的工作原理 TL整流器主电路如图1所示,由8个开关管V11~V42组成三电平桥式电路。假定u1=u2=ud/2,则每只开关管将承担直流侧电压的一半。以左半桥臂为例,1态时,当电流is为正值时,电流从A点流经VD11及VD12到输出端;当is为负值时,电流从A点流经V11及V12到输出端,因此,无论is为何值,均有uAG=uCG=+ud/2,D1防止了电容C1被V11(VD11)短接。同理,在0态时,有uAG=0;在-1态时,有uAG=uDG=-ud/2,D2防止了电容C2被V22(VD22)短接。右半桥臂原理类似,因此A及B端电压波形如图2所示,从而在交流侧电压uAB上产生五个电平:+ud,+ud/2,0,-ud/2,-ud。每个半桥均有三种工作状态,整个TL桥共有32=9个状态。分别如下:状态0(1,1)开关管V11,V12,V31,V32开通,变换器交流侧电压uAB等于0,电容通过直流侧负载放电,线路电流is的大小随主电路电压us的变化而增加或减小。状态1(1,0)开关管V11,V12,V32,V41开通,交流侧输入电压uAB等于ud/2,输入端电感电压等于us-u1。电容C1电压被正向(或反向)电流充电(u1
逆变器中提到的两电平逆变器,三电平逆变器中的电平是什么
在逆变器中,电平概念指的是用于信号传输或能量转换的电压级别。两电平逆变器设计简洁,仅提供两种电压级别:高或低,适用于低成本应用。相比之下,三电平逆变器提供三种电压级别,通过引入电压中点,实现更精细的电压控制,如图所示。
三电平逆变器相比两电平逆变器,在系统层面拥有显著优势:
1. **损耗减少、开关频率提升、成本降低**:例如在NPC1拓扑中,开关器件的电压降低至原来的一半,大幅降低了器件的开关损耗。提升开关频率后,可以减小输出滤波器的体积和成本。在功率等级不变的情况下,通过提高母线电压,可以减小输出端电流,降低输出线缆成本。
2. **器件可靠性提升**:在相同电压等级的系统中,三电平拓扑中的器件承受的阻断电压更低,从而提升了器件的可靠性。
3. **改善电磁干扰(EMI)**:三电平逆变器在开关过程中的dv/dt显著降低,有效改善了系统的电磁干扰。
尽管三电平逆变器存在器件成本增加、控制算法复杂度提升、损耗分布不均和中点电位波动等挑战,但其独特优势使得其在光伏、储能、UPS、APF等众多应用领域得到了广泛使用。下面将详细介绍常见的三电平拓扑:
- **NPC1拓扑**:通过优化电流路径和零电平换流机制,实现了损耗分布的优化和EMI的改善。在逆变工况中,NPC1的损耗主要集中在T1/T4管,而在整流工况中,主要损耗集中在T2/T3管和D5/D6管。仿真结果显示,在高频系统中,NPC1拓扑效率更优。
- **NPC2拓扑**:相较于NPC1,NPC2减少了二极管的数量,采用共射极或共集电极的IGBT和反并联二极管取代钳位二极管,从而降低了损耗,提高了中低开关频率下的系统效率。仿真表明,当电流等级和耐压相同,NPC2拓扑在中低开关频率下的总损耗低于NPC1拓扑。
- **ANPC拓扑**:通过替换钳位二极管为IGBT和反并联二极管,ANPC拓扑进一步优化了损耗分布,通过选择不同的零电平换流路径,实现了更均衡的损耗控制。ANPC的调制算法(ANPC-1、ANPC-2和ANPC-1-00)分别针对不同的损耗特性进行了优化。
英飞凌提供了丰富多样的功率器件,包括OptiMOS™、CoolMOS™、CoolSiC™ MOSFET以及IGBT,满足家用、商用到电站级大型项目的太阳能逆变器设计需求。此外,英飞凌的Easy 1B/2B模块和集成型产品如EiceDRIVER™栅极驱动器IC和XMC™控制器,提供了高集成度和功能性集成解决方案。
对于寻找更多应用、产品信息或购买产品的用户,英飞凌提供了在线信息填写表单,用户可以填写个人信息和需求,英飞凌将安排专人跟进。
深圳三电平逆变器厂家推荐
逆变器给车主带来了很大的方便,相当于车内小电源。但关于逆变器维修的知识可能很多车主都不怎么了解。下面小编就来为大家分享车载逆变器日常维修技巧。让您轻松处理。若出现不能正常工作问题,您要先检查是否线已经连接好,若接触不良是无法启动的,这时您只要将线重接连接一下就好了。细心地朋友都会注意到,深圳三电平逆变器厂家推荐,正常情况下指示灯会亮,由于车载逆变器电路一般都具有上电软启动功能,因此在接通电源后要等5s-30s后才会有交流220V的输出,同时LED指示灯点亮,当LED指示灯不亮时,则表明逆变电路没有工作,深圳三电平逆变器厂家推荐,这时,深圳三电平逆变器厂家推荐,您不要着急,等待一段时间。逆变器在连接机器的输入输出前,请首先将机器的外壳正确接地。深圳三电平逆变器厂家推荐
光伏逆变器的效率影响着光伏发电系统的整体效率,其安装事项不可忽视,需有专业的操作,以确保提供光伏逆变器适宜稳定的运行环境。选择好安装位置后,如何安装光伏逆变器需要确认以下几点:1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。2、在选择光伏逆变器安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。暴露于阳光,光伏阵列将会产生危险电压。4、所有安装操作必须且由专业技术人员完成。5、光伏系统发电系统中所使用线缆必须连接牢固,良好绝缘以及规格合适。6、所有的电气安装必须满足当地以及国家电气标准。深圳48V逆变器销售逆变器是一个推挽式拓扑逆变电路。
工作效率:“逆变器”逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输出功率与输入功率之比,即逆变器效率为输出功率比上输入功率。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。使用范围使用生活电器(如:、DVD、音响、摄像机、电风扇、照明灯具等);1.使用办公设备(如:电脑、传真机、打印机、扫描仪等);或需要给电池(手机、电动剃须刀、数码相机、摄像机等电池)充电时;
电动车上,有一个叫DC-DC的模块,他也叫直流转换器 ,这个模块输入48V,输出12V,那么你只要购买一个12V输入的车载逆变器就可以使用。当然若你能买到48V输入的逆变器更好,但估计很难买到 而且,这个模块一般只能提供5A电流,较多不过10A,而且车灯什么的也要用,所以很容易过载,建议,如果可以,多买一个 直流转换器,这个转换器专门给你那逆变器供电,然后如果直流转换器只能提供5A,那么逆变器输入就应当小于5A,否则可能会损坏那模块, 当然有一些直流转换器电流是很大的,如果修车的地方没有,可以到一些电器店或叫他们修理的给你进一个大电流的,或者多个直流转换器并联也可以,总之,不要让他过载就可以 。城市轨道车辆上有一种vvvf牵引逆变器,用于变频变压,在列车牵引时将高压(一般为dc750V或DC1500V)变为频率和电压可调的三相电供给牵引电动动机使用,在制动时可以把列车惯性带动牵引电机旋转发出的三相电能转换为直流电反馈回电网或通过能量消耗模块消耗掉。逆变器所有安装操作必须且由专业技术人员完成。
看电气规格书这一点很重要,电气规格表描述的一般都很各方面了,输出功率,瞬间功率,输入电压范围,效率,波形失真度,输出电压稳定度,对应你的项目要求,规格书列明的是不是你正需要的。每家提供的规格书还是有区别的。如上图所示功能,输出频率可调,输出电压可调,就很好的方便了用户,适应不同的负载自己进行设定。每家设计逆变器的电路都不太相同,重要的是能否带动感性负载,混合性负载等,带载能力有多强,保护功能是否齐全,也是你要考虑的。只有测试做对比你就不难发现差异在哪里,根据你项目的来选择工作和储存温度范围,现在一般标0~40度的环境温度, 以裕凯逆变器的规格来看基本可以在 -20~50度,实测可以-30~55度,在行业里算是比较的水平。逆变器所有的电气安装必须满足当地以及国家电气标准。深圳48V逆变器销售
逆变器电磁兼容性和抗电磁干扰能力。深圳三电平逆变器厂家推荐
严格按照逆变器使用维护说明书的要求进行设备的连接和安装。在安装时,应认 真检查:线径是否符合要求;各部件及端子在运输中有否松动;应绝缘处是否绝缘良好;系 统的接地是否符合规定。 2.应严格按照逆变器使用维护说明书的规定操作使用。尤其是:在开机前要注意输 入电压是否正常; 在操作时要注意开关机的顺序是否正确, 各表头和指示灯的指示是否正常。 3.逆变器一般均有断路、过电流、过电压、过热等项目的自动保护,因此在发生这 些现象时,无需人工停机;自动保护的保护点,一般在出厂时已设定好,无需再行调整。 4.逆变器机柜内有高压,操作人员一般不得打开柜门,柜门平时应锁死。 5.在室温超过30℃时,应采取散热降温措施,以防止设备发生故障,延长设备使 用寿命。 维护检修 深圳三电平逆变器厂家推荐
深圳市保益新能电气有限公司专注技术创新和产品研发,发展规模团队不断壮大。公司目前拥有较多的高技术人才,以不断增强企业重点竞争力,加快企业技术创新,实现稳健生产经营。公司业务范围主要包括:UPS/EPS电源,双向逆变器,安防电源,激光储能电源等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。公司凭着雄厚的技术力量、饱满的工作态度、扎实的工作作风、良好的职业道德,树立了良好的UPS/EPS电源,双向逆变器,安防电源,激光储能电源形象,赢得了社会各界的信任和认可。
三电平逆变有什么优势?
英飞凌工程师为您解答:三电平逆变器拓扑的优势
随着对逆变器的功率密度、效率、输出波形质量等性能要求的提升,中点钳位型三电平拓扑逆变器已经广泛应用于光伏、储能、UPS、APF等场合。典型的三电平拓扑有二极管型NPC、Conergy NPC、有源NPC。
相比于传统的两电平逆变器,三电平逆变器具有以下优势:
损耗减小,开关频率提升,系统成本降低:如NPC1拓扑中开关器件的电压可减小为原来的一半,大幅降低器件开关损耗,可通过提高母线电压减小输出端的电流,减少输出线缆成本。
器件可靠性提升:在同样电压等级的系统中,三电平拓扑中器件承受的阻断电压降低,提升器件的可靠性。
改善电磁干扰EMI:由于开关过程中器件的dv/dt大幅降低,系统电磁干扰得到改善。
当然,三电平拓扑也存在一些劣势,如器件成本增加、控制算法复杂度提升、损耗分布不均衡和中点电位波动等问题。但得益于其独特优势,三电平拓扑在众多场合得到广泛使用。
常见三电平拓扑介绍
NPC 1
电流路径:蓝绿色线条为导通电流路径,紫色线条为对应的零电平换流路径。功率因数为+1对应①和②两种模态,功率因数为-1对应③和④两种模态。
损耗分布:以F3L225R12W3H3器件为例,在逆变工况时,NPC1的损耗主要集中在T1/T4管,包括导通损耗和开关损耗;在整流工况下,损耗主要集中在D1/D4管和T2/T3管。
NPC 2
电流路径:在NPC2拓扑中,用一对共射极或共集电极的IGBT和反并联二极管代替NPC1二极管钳位的功能,T1/T4管承受全母线电压,T2/T3管承受半母线电压。
损耗分布:在NPC2拓扑中T1/T4为高压器件,开关损耗较大,但由于电流路径上的开关器件数量减少,导通损耗更小,因此NPC2拓扑在中低开关频率的系统中效率更优。
ANPC
电流路径:ANPC拓扑通过拓展两条零电平换流路径,通过对零电平换流路径的选择和控制可以实现更均衡的损耗分布和更小的换流回路杂感。不同调制算法会产生不同的损耗分布。
英飞凌提供的产品
英飞凌提供适用于不同逆变器设计需求的功率器件,包括家用、商用和电站级逆变器。产品包含OptiMOS™、CoolMOS™、CoolSiC™ MOSFET、IGBT、Easy 1B/2B模块、功能性集成型产品EiceDRIVER™栅极驱动器IC和XMC™控制器等。
三电平Easy 1B/2B模块
Easy B系列模块提供600V、650V和1200V电压以及6A至200A电流。模块涵盖PIM和三相两电平全桥配置,以及桥式整流器、半桥、H桥式、三电平全桥和三电平单相模块。模块采用灵活网格引脚与新型IGBT芯片技术相结合,易于集成PIM配置,并采用新型TRENCHSTOP™ IGBT7技术,在Easy 1B封装中集成25A PIM。
更多信息
若您想寻找更多应用、产品信息或想联系我们购买产品,请点击此处填写您的个人信息及需求,我们将安排专人后续跟进。
光伏漫谈4- 逆变器拓扑结构
光伏逆变器拓扑结构概述
光伏逆变器作为光伏发电系统中最关键的设备之一,其拓扑结构的选择对于系统的性能、效率和成本具有重要影响。根据功率等级、应用场景以及隔离要求的不同,逆变器拓扑结构呈现出多样性。以下是对几种常见光伏逆变器拓扑结构的详细解析:
一、工频隔离逆变器
工频隔离逆变器通过工频50Hz变压器实现源边和副边的功率传输。这种拓扑结构最为简单,仅需整流桥、滤波器和工频变压器即可。然而,由于50Hz工频变压器的体积较大,导致整个逆变器系统的体积和成本增加,因此在实际应用中很少使用。
二、高频隔离逆变器
高频隔离逆变器在微型逆变器中使用较多,为了降低体积和重量,通常采用高频隔离的拓扑结构。以下是三种常见的高频隔离微型逆变器:
带有直流母线的隔离全桥逆变器
这种拓扑结构具有中间直流母线,变压器源边的整流与副边的逆变器可以解耦分别调整。然而,该架构使用的功率器件较多,且需要高压直流母线电容进行整流滤波,增加了系统的复杂性和成本。
伪直流母线的交错反激逆变器
伪直流母线拓扑实际上没有直流母线,通过交错反激结构将直流信号变换成正半周期的正弦波,再通过可控硅调整成全周期正弦波。该拓扑节省了大量高压电容,降低了系统成本,但效率相对较低,适用于小功率微型逆变器。
不含直流母线的串联谐振逆变器
这种拓扑结构同样不需要直流母线和高压电容滤波,变压器源边工作在零电压开通状态,效率较高。该结构不仅适用于光伏逆变器,还可用于户用储能逆变器。
三、非隔离的逆变器拓扑
非隔离逆变器拓扑结构省去了变压器,因此效率更高、体积更小、成本更低。然而,由于没有变压器隔离,可能存在零点偏移和直流分量等问题,需要采取相应的措施进行抑制。以下是两种常见的非隔离逆变器拓扑:
带有MPPT升压的2电平非隔离逆变器拓扑
这种拓扑结构通过带有单路或多路MPPT并联到直流母线,再通过2电平逆变结构实现组串式逆变器。为了消除直流分量,可以采用交流或直流旁路方式。
带有旁路二极管的BOOST双模式非隔离逆变器拓扑
该结构设计巧妙,BOOST电路不仅将PV输入升压成DC电压,还直接升压到工频信号。通过BOOST和逆变两种模式交替工作,可以实现完整的正弦输出。
四、组串式逆变器NPC拓扑
组串式逆变器在光伏系统中应用广泛,NPC三电平逆变器是其中一种常见的拓扑结构。NPC三电平逆变器具有效率高、谐波小等优点。以下是三种NPC三电平逆变器的变体:
I型NPC三电平逆变拓扑
I型NPC三电平拓扑结构相对简单,但存在内外管开关损耗不平衡的问题。
ANPC三电平逆变拓扑
ANPC三电平拓扑通过将两个二极管更换成IGBT,实现了内外管开关损耗的平衡。然而,该拓扑控制较复杂,开关管也较多,系统成本和体积较大。
T型NPC逆变器拓扑
T型三电平拓扑同样使用4个IGBT功率管,但其中处于中性点的是一对背靠背连接的IGBT。该拓扑结构开关损耗平衡,效率高,但功率管的耐压需要与母线电压相同,适用于低压系统或需要更高耐压功率管的实现。
总结而言,光伏逆变器的拓扑结构多种多样,每种拓扑结构都有其独特的优点和适用场景。随着功率器件开关特性和耐压的提升,以及学术界研究的深入,未来仍将有更多逆变器拓扑结构衍生出来,进一步提升应用效率、降低体积和成本。
新能源商用车高压化面临的机遇与挑战:三电平逆变技术
新能源商用车高压化背景下,三电平逆变技术面临的机遇与挑战如下:
机遇: 技术优势显著:三电平逆变器相比传统两电平结构,具有功率器件电压应力及损耗低、输出波形质量好、效率高等明显优势。 应用经验丰富:借助三电平拓扑在光伏发电并网中的广泛应用经验,该技术在新能源商用车领域可以快速推广,并展现出巨大潜力。 输出波形优化:三电平主电路拓扑通过增加一个零电平输出,使得输出波形更接近于正弦波,提高了转换效率和输出质量,这对于提升系统效率和稳定性至关重要。 调制效率提升:三电平SVPWM调制方法进一步细化了扇区分布,提高了调制效率,输出波形更接近正弦,纹波含量更少,有利于提升电机驱动性能和降低系统损耗。 适合高压大容量应用:三电平逆变器在高压大容量应用场合中具有突出优势,每个主开关器件关断时所承受的电压仅为直流侧电压的一半,这使得三电平逆变器成为新能源商用车高压化的理想选择。
挑战: 技术复杂度增加:三电平逆变器的设计、制造和维护相比两电平逆变器更为复杂,需要更高的技术水平和更精细的工艺控制。 成本问题:由于三电平逆变器的结构和调制方法更为复杂,其制造成本可能会相对较高,这对于新能源商用车的成本控制构成一定挑战。 可靠性要求提高:新能源商用车对逆变器的可靠性要求极高,三电平逆变器需要满足更高的可靠性和稳定性标准,以确保车辆的正常运行和安全性。 系统集成难度:三电平逆变器在新能源商用车中的系统集成需要考虑到车辆的整体布局、散热、电磁兼容等多个方面,增加了系统集成的难度。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467