Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

光伏逆变器输出受控

发布时间:2025-07-26 08:50:46 人气:



光伏逆变器输出受控

在MATLAB 7.1版本中,针对universal bridge的输出与电压受控源连接出错的问题,可以尝试以下解决方案:

确保测量模块设置正确

使用Simulink中的三相电压电流测量模块时,请检查其设置。确保你测量的是正确的电压类型。

对于逆变器输出的三相三线制系统,通常只测量线电压。确保测量模块配置为测量线电压而非相电压。

接地处理

将三个电压测量的公共端接地,这有助于准确测量三相系统的相电压。

接地后,检查测量值是否稳定且符合预期。如果接地后问题依旧,则可能问题不在接地处理上。

检查负载连接

重点检查:接地之后若仍存在问题,很可能是后续连接的负载导致。检查负载的连接是否正确,以及负载是否对系统产生了不良影响。

确保负载与电压测量模块之间的连接没有短路或断路现象。

计算与验证

可以通过测量得到的Uab和Ubc线电压,利用数学关系计算出三相相电压。

也可以通过逆变器控制脉冲和直流电压来推算三相相电压,以验证测量结果的准确性。

模块选择与应用

确保使用的模块适用于你的电路类型。例如,PWM控制模块通常用于全控器件,而不适用于半控器件。

如果你的电路中使用的是晶闸管等半控器件,尝试使用同步六脉冲触发模块等更合适的控制模块。

仿真与调试

在Simulink中进行仿真时,逐步添加和测试各个模块,以便定位问题所在。

使用示波器等工具观察电压和电流的波形,以进一步分析和调试电路。

通过上述步骤,你应该能够定位并解决universal bridge输出与电压受控源连接出错的问题。如果问题仍然存在,建议详细检查电路连接和参数设置,或者寻求更专业的技术支持。

逆变器的工作原理

逆变器的工作原理基于桥式逆变电路,将直流电转换为交流电。具体步骤如下:

桥式电路控制

在桥式电路中,有四个开关T1、T2、T3和T4。这些开关的状态受控于施加在其控制极的电压信号。

开关状态切换

当T1和T4打开,T2和T3闭合时,输出电压u0等于直流电压Ud。当T1和T4闭合,T2和T3打开时,输出电压u0变为Ud。

形成交变方波

通过这些开关的交替通断,可以形成一个频率为f的交变方波。这个交变方波的频率f由控制电压信号的频率决定,幅值等于Ud。

调节输出

通过调整控制信号频率f,可以改变输出端的频率。通过调整直流电源电压Ud,可以调节基波幅值。

实现逆变

通过上述过程,逆变器实现了将直流电转化为交流电的目标,通常输出为220V、50Hz的正弦波。

逆变器的重复控制

逆变器的重复控制

逆变器中的重复控制是一种针对周期性扰动信号的有效控制策略,它基于内模原理,能够无静差地消除周期信号,特别适用于处理如RCD负载产生的周期性电流扰动等问题。

一、内模原理与重复控制基础

内模原理指出,若控制器的反馈来自被调节的信号,且在反馈回路中包含被控信号的动力学模型,则系统能够稳定。对于重复控制而言,其核心在于将外部周期性信号的动力学模型植入控制器,从而构成高精度的反馈控制系统。这种系统能够无静差地跟踪输入信号,特别是周期性信号。

对于阶跃信号,PI控制器可以无静差地跟踪。然而,对于正弦信号或周期性重复信号,PI控制器则无法做到无静差跟踪。此时,PR控制器(比例谐振控制器)或重复控制器则更为适用。PR控制器可以针对特定频率的正弦信号进行无静差跟踪,而重复控制器则能够处理任意周期性信号。

二、重复控制器的结构与工作原理

重复控制器的结构通常包括受控对象、补偿器、低通滤波器以及内模等部分。其中,内模是重复控制器的核心,它包含了周期性信号的动力学模型。补偿器则用于对系统的相位和幅值进行补偿,以确保系统的稳定性和控制效果。低通滤波器则用于滤除高频噪声,避免对系统造成干扰。

重复控制器的工作原理可以概括为:在每个控制周期内,控制器都会根据前一个周期的误差信号来计算当前周期的控制输出。通过不断迭代和修正,系统能够逐渐消除周期性扰动信号,实现无静差控制。

三、逆变器重复控制的实现

在逆变器系统中,重复控制通常嵌入在电压外环PI控制之前,形成复合控制系统。这样既能保留PI控制器对直流分量的快速响应能力,又能利用重复控制器对周期性扰动信号进行精确抑制。

实现逆变器重复控制的关键在于确定重复控制器的参数,包括内模的周期、补偿器的相位和幅值补偿系数等。这些参数需要根据系统的实际情况进行调试和优化,以确保系统的稳定性和控制效果。

四、逆变器重复控制的仿真与实验

通过Matlab/Simulink等仿真软件,可以对逆变器重复控制系统进行建模和仿真分析。仿真结果可以直观地展示系统在有无重复控制下的性能差异,包括输出电压和电流的波形、总谐波失真(THD)等指标。

实验方面,可以在实际的逆变器系统中进行重复控制实验,通过调整控制参数和观察系统响应,进一步验证重复控制的有效性和稳定性。

五、总结

逆变器的重复控制是一种有效的控制策略,能够显著抑制周期性扰动信号,提高系统的稳定性和输出电压质量。通过合理的参数设计和优化,重复控制器可以在逆变器系统中发挥重要作用,为电力电子设备的稳定运行提供有力保障。

以下是一些关键的描述和展示:

(RCD负载的电流信号波形,展示了周期性扰动的特点)(重复控制器的结构图,展示了控制器的主要组成部分和工作原理)(逆变器系统的Matlab模型,用于仿真分析重复控制的效果)(采用重复控制后的输出电压和参考电压波形,展示了控制效果的提升)

这些和描述有助于更直观地理解逆变器重复控制的工作原理和实际效果。

单相逆变器锁相环的作用是

作用:调节电路负反馈的频率,保证电路的平衡性。;锁相环 (phase locked loop),顾名思义,就是锁定相位的环路。学过自动控制原理的人都知道,这是一种典型的反馈控制电路,利用外部输入的参考信号控制环路内部振荡信号的频率和相位,实现输出信号频率对输入信号频率的自动跟踪,一般用于闭环跟踪电路。是无线电发射中使频率较为稳定的一种方法,主要有VCO(压控振荡器)和PLL IC (锁相环集成电路),压控振荡器给出一个信号,一部分作为输出,另一部分通过分频与PLL IC所产生的本振信号作相位比较,为了保持频率不变,就要求相位差不发生改变,如果有相位差的变化,则PLL IC的电压输出端的电压发生变化,去控制VCO,直到相位差恢复,达到锁相的目的。

能使受控振荡器的频率和相位均与输入信号保持确定关系的闭环电子电路。

浅谈光伏逆变器最大功率点追踪MPPT与电流采集

浅谈光伏逆变器最大功率点追踪MPPT与电流采集

光伏逆变器作为光伏发电系统的核心组件,不仅负责将光伏阵列产生的直流电转换为安全平稳的工频交流电,还承担着确保光伏组件在最大功率点工作的重任,以最大化发电效率。本文将从最大功率点追踪(MPPT)技术和电流采集两个方面进行浅谈。

一、最大功率点追踪(MPPT)

光伏组件的最大功率点

光伏组件的输出特性是非线性的,存在一个特定的工作点,即最大功率点(Pmax),在该点光伏组件的电压(Ump)与电流(Imp)的乘积达到最大值。为了使光伏组件的发电效率最大化,逆变器需要具备MPPT功能,使组件始终工作在最大功率点。

MPPT技术原理

MPPT功能通常通过控制电路发出PWM信号对DC/DC变换过程进行调节来实现。其基本原理是通过调节负载阻抗(或等效地,通过DC-DC变流器调节光伏组串的等效负载阻抗),使光伏组件的输出功率达到最大。在实际应用中,由于负载阻抗往往是不受控的,因此通过在光伏组串与负载之间添加DC-DC变流器来调节等效负载阻抗,从而实现MPPT。

MPPT控制器一般采用两种控制方法:电压控制法和直接控制法。电压控制法通过比较参考电压信号(由MPPT算法生成)与当前采集的电压信号,将结果传递给PI控制器,得到DC-DC占空比,进而生成PWM控制DC-DC。而直接控制法则直接通过MPPT算法生成占空比,继而生成PWM,无需设计PI控制器,实现难度和成本较低。

二、电流采集

电流检测的重要性

MPPT控制的精度不仅受内部算法性能影响,还依赖于逆变器检测回路中的传感器对于各输入输出电流电压的采集精度。因此,电流采集在MPPT过程中起着至关重要的作用。

电流传感器

逆变器检测回路中的电流传感器通常采用高精度闭环磁通门电流传感器或开环霍尔传感器。这些传感器能够精确采集电流信号,为MPPT算法提供准确的数据输入。例如,巨磁智能技术有限公司自主研发的高精度闭环磁通门电流传感器,检测精度达到千分之七,检测线性度达到千分之一,可为光伏逆变器MPPT电路设计提供高精度的电流数据采集。

电流检测方案

为了满足逆变器组串端与交流输出端的电流检测需求,通常采用多种传感器组合的方案。例如,巨磁智能技术有限公司提供的开环霍尔电流传感器ME、MG系列以及漏电流传感器RCMU101SN系列,能够满足逆变器在不同应用场景下的电流检测需求,为光伏逆变器设计打造极具性价比的电流检测整体方案。

总结

光伏逆变器的最大功率点追踪(MPPT)技术和电流采集是实现高效光伏发电的关键环节。通过精确调节负载阻抗或等效负载阻抗,MPPT技术能够使光伏组件始终工作在最大功率点,从而最大化发电效率。而高精度的电流采集则为MPPT算法提供了准确的数据输入,确保了MPPT控制的精度和稳定性。在实际应用中,应选择合适的电流传感器和检测方案,以满足光伏逆变器在不同应用场景下的需求。

一文看懂逆变器的17种主要类型

逆变器的17种主要类型

逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:

一、按输入源分类

电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。

电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。

二、按输出相位分类

单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。

三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。

三、按换向技术分类

线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。

强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。

四、按连接方式分类

串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。

并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。

半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。

全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。

三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。

五、按操作模式分类

独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。

并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。

双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。

六、按输出波形分类

方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。

准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。

纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。

七、按输出电平数量分类

两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。

多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。

以下是部分逆变器的展示:

综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言