Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器有功无功解耦

发布时间:2025-07-26 02:30:23 人气:



下垂控制(1):基本原理

下垂控制涉及两种主要运行模式:一种是电流源模式(grid-following工作模式),逆变器根据输出端电压的频率和幅值产生相应的有功功率和无功功率,关系为p-f,Q-v工作模式。另一种是电压源模式(grid-forming工作模式),逆变器根据电网的频率和逆变器的端电压产生输出功率,关系为f-p,v-Q工作模式。频率-watt控制常用于商业变压器,而droop-control则适用于微电网孤岛运行状态。

两种模式的使用条件和优点也不同。在高压电网中,下垂控制依赖于线路电抗和电阻的关系,通常适用于率和频率、无功和电压呈现出下垂关系的高压网络。在低压电网中,这种关系则相反。

通过推导,可以发现当逆变器向电网输送功率时,其端阻抗、电压相角和功率传输的关系至关重要。在高压网络中,线路电抗远大于电阻,导致功率传输与频率的关系更为显著。而在低压网络中,这种关系则不同。

下垂控制的公式可以简化为f-p,v-Q关系,这是在考虑逆变器的电压角频率和相角差的基础上得到的。当逆变器出口阻抗工作于感性状态时,可以调节逆变器出口阻抗以维持这种下垂控制关系,同时确保PQ和V的解耦控制。

下垂控制与同步发电机的关系主要体现在其一次调频和二次调频的功能上,与同步发电机的调频机制相类似。此外,下垂控制与虚拟同步机的区别在于,虚拟同步机具有虚拟惯性,这在某些系统中可能具有优势。

综上所述,下垂控制在电力系统中扮演着关键角色,通过调整功率输出以维持电网稳定性,其在不同网络条件下的应用和推导都体现了其灵活性和适应性。通过下垂控制,系统可以实现高效、稳定的电力分配,特别是在微电网和电力孤岛运行中。

山东微型逆变器品质保障 东安岩芯供

微型逆变器安装系统所需配件,除了微型逆变器,光伏组件等基本硬件外,安装微型逆变器的太阳能系统需要以下一些相关配件。岩芯配件:交流支线:用于将各个微逆变器接入电网的电缆。交流支线尾封:用于保护支路中后面的一个逆变器的连接器·交流支线节点密封盖:用于密封支线上未使用的空节点。延长线:用于延长交流支线至智能监控设备箱智能监控设备箱:内部安装有断路器、防雷、阻波器及SMU。其它配件防水线端连接器(岩芯配套)。微型逆变器安装支架:用于固定微型逆变器,山东微型逆变器品质保障。2安装系统所需工具安装系统时候客户需要用到以下一些工具:用于安装的插座和扳手,山东微型逆变器品质保障。十字螺丝刀,山东微型逆变器品质保障。扭力扳手。冷知识!你不知道的微型逆变器作用及优点。山东微型逆变器品质保障

出现以下情况,保修不适用,岩芯电子将不负责(1)由于不当使用,更改所造成的内部或外部损坏(2)不正确的安装和操作,包括在产品设计之外的条件和不合适的环境条件下使用,违反用户手册规定或法律、法规(3)遭受火灾、水灾、腐蚀、虫灾或输入电压超出了岩芯微逆变器的比较大(4)由于太阳能系统其他部件缺陷所造成的损坏(5)原先的产品标识(包含商标和序列号)已毁坏、涂改或删除。保修不包含相关的搬运、安装或客户的电力系统故障诊断费用。保修不会超出原始微逆变器的成本。保修和专有保证是在法律允许下岩芯电子给予的。并以明确的表示代替所有其他明示、暗示的法规。包括但不限于保证所有权、质量、促销性、适合特定用途、不侵权和在用户手册或其它文档中提供的技术或其它信息中提及的保证准确性、完整性和适用性。在任何情况下,岩芯电子对特殊、直接、间接、偶然或必然造成的损害、损失和成本上升都不会负责,包含且不限于任何种类经济损失、财产毁坏或任何个人伤害。对于任何法律规定的适用于岩芯电子微逆变器的暗示保证的期限于在产品的保修期内。一些省份可能不允许暗示保证的有效期限制或免除以及意外或间接损坏的限制。因此,上述有些限制或免除可能不适用。上海微型逆变器报价表微型逆变器中的芯片是什么型号?

微型逆变器,一般指的是光伏发电系统中的功率小于等于1000瓦、具组件级MPPT的逆变器,全称是微型光伏并网逆变器。“微型”是相对于传统的集中式逆变器而言的。传统的光伏逆变方式是将所有的光伏电池在阳光照射下生成的直流电全部串并联在一起,再通过一个逆变器将直流电逆变成交流电接入电网;微型逆变器则对每块组件进行逆变。其优点是可以对每块组件进行的MPPT控制,能够大幅提高整体效率,同时也可以避免集中式逆变器具有的直流高压、弱光效应差、木桶效应等。1、安全传统集中型逆变器或组串式逆变器通常具有几百伏上千伏的直流电压,容易起火,且起火后不易扑灭。微逆几十伏的直流电压,全部并联,很大程度降低了安全隐患。2、智能组件级的监控,可在ECU中看到每块组件的工作状态。[1]3、多发电组件级的MPPT,无木桶效应,降低了遮挡对发电量的影响;弱光效应好,因为启动电压低,20V,在光照弱的时候也能工作。4、寿命长通常微逆设计寿命为25年,传统逆变器为10年。5、方便、美观不需要专门建设配电房,微逆可以直接安装在组件后面或者支架上,因为是并联结构,后期增加规模可直接安装,无需更改之前的配置。

从系统中拆卸逆变器注意!逆变器的交流端和交流总线的接头是牢固且防水的,务必使用的开启工具拆卸,蛮力拆卸会造成设备的损坏。按照以下步骤拆卸已经安装在系统中的逆变器。1)将汇流箱的主断路器和各支路的断路器断开。2)将交流总线和连接接线盒的交流线缆之间的连接器断开,以保证系统脱离交流电网。3)使用岩芯的工具将逆变器的交流端子从交流总线上拆下来。4)用不透明物体遮盖住要拆卸的逆变器所连接的光伏组件。5)用直流电流钳测量直流端子,确保光伏组件和逆变器之间没有电流。6)断开光伏组件和逆变器之间的直流接线端子。7)将逆变器从支架上拆卸下来。8)如果暂时不安装新的微型逆变器,使用交流总线的节点密封盖密封开放的节点。维修说明警告!非专业人员请勿拆卸!根据故障处理步骤,确认微型逆变器已经损坏,请联系岩芯电子客服人员,我们将为您提供售后服务。微型逆变器—“分布式光伏的全能型选手”遮挡不受影响。

微型逆变器,一般指的是光伏发电系统中的功率小于等于1000瓦、具有组件级MPPT的逆变器,全称是微型光伏并网逆变器。“微型”是相对于传统的集中式逆变器而言的。传统的光伏逆变方式是将所有的光伏电池在阳光照射下生成的直流电全部串并联在一起,再通过一个逆变器将直流电逆变成交流电接入电网;微型逆变器则对每块组件进行单独逆变,是由一块太阳能电池板与一个逆变器组成的。其优点是可以对每块组件进行的MPPT控制,能够大幅提高整体效率,同时也可以避免集中式逆变器具有的直流高压、弱光效应差、木桶效应等。从目前来看,微逆变器的优点非常明显,在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小,由此可见,微逆变器的前景非常广阔,相信在未来,微逆变器将掀起逆变器领域的变革浪潮。光伏微型逆变器作为一种新型的光伏并网装置,有着广阔的发展前景。太阳能发电系统中光伏并网逆变器与微型逆变器的区别.节能微型逆变器欢迎咨询

光伏微型太阳能逆变器辅助电源解决方案.山东微型逆变器品质保障

三相型微型逆变器通常也为两级式,仍需升压环节,整体电路所需器件较多,成本较单相式逆变电路高。无升压环节的三相拓扑虽然效率较高,但目前应用对象为特定的大功率输出光伏面板,并不具备普遍性。如若引入升压环节,该类型拓扑和多级式拓扑类似,电路所需器件亦较多。由于微型逆变器多采用小容量的逆变器设计,其效率相对较低,而且成本较高。通过分析目前提出的微型逆变器结构可知,单级式微型逆变器由于结构简单,所需开关数目较少,成本相对于多级式逆变器较低,且效率相对较高,若能进一步改进功率解耦电路,同时引入软开关技术,使功率解耦电路和逆变器电路均工作在软开关状态,不仅能降低主电路的损耗,提高整体效率,还能减少器件的发热,进一步提升系统的可靠性,高效率低成本的单级式微型逆变器将更具吸引力。另外,影响微型逆变器可靠性的因素还有很多,当前对于提高微型逆变器工作寿命问题的研究主要集中在如何取代电路中电解电容这一方面,实际中微型逆变器的极端工作环境、封装、制作工艺等均会影响设备的可靠性。在微型逆变器设计中应综合考虑多方面的因素。山东微型逆变器品质保障

苏州东安岩芯能源科技股份有限公司是一家节能、电子、光伏、新能源、自动化、计算机软硬件的技术领域内的技术开发、技术咨询、技术转让、技术服务及相关产品的销售;售电服务;分布式发电项目的建设、管理及运营;太阳能光伏系统工程的设计、施工及维护;合同能源管理;从事货物及技术进出口业务。的公司,致力于发展为创新务实、诚实可信的企业。东安岩芯作为节能、电子、光伏、新能源、自动化、计算机软硬件的技术领域内的技术开发、技术咨询、技术转让、技术服务及相关产品的销售;售电服务;分布式发电项目的建设、管理及运营;太阳能光伏系统工程的设计、施工及维护;合同能源管理;从事货物及技术进出口业务。的企业之一,为客户提供良好的微型逆变器,分布式光伏电站,户用太阳能发电,。东安岩芯不断开拓创新,追求出色,以技术为先导,以产品为平台,以应用为重点,以服务为保证,不断为客户创造更高价值,提供更优服务。东安岩芯创始人彭惠新,始终关注客户,创新科技,竭诚为客户提供良好的服务。

光伏漫谈4- 逆变器拓扑结构

光伏逆变器拓扑结构概述

光伏逆变器作为光伏发电系统中最关键的设备之一,其拓扑结构的选择对于系统的性能、效率和成本具有重要影响。根据功率等级、应用场景以及隔离要求的不同,逆变器拓扑结构呈现出多样性。以下是对几种常见光伏逆变器拓扑结构的详细解析:

一、工频隔离逆变器

工频隔离逆变器通过工频50Hz变压器实现源边和副边的功率传输。这种拓扑结构最为简单,仅需整流桥、滤波器和工频变压器即可。然而,由于50Hz工频变压器的体积较大,导致整个逆变器系统的体积和成本增加,因此在实际应用中很少使用。

二、高频隔离逆变器

高频隔离逆变器在微型逆变器中使用较多,为了降低体积和重量,通常采用高频隔离的拓扑结构。以下是三种常见的高频隔离微型逆变器:

带有直流母线的隔离全桥逆变器

这种拓扑结构具有中间直流母线,变压器源边的整流与副边的逆变器可以解耦分别调整。然而,该架构使用的功率器件较多,且需要高压直流母线电容进行整流滤波,增加了系统的复杂性和成本。

伪直流母线的交错反激逆变器

伪直流母线拓扑实际上没有直流母线,通过交错反激结构将直流信号变换成正半周期的正弦波,再通过可控硅调整成全周期正弦波。该拓扑节省了大量高压电容,降低了系统成本,但效率相对较低,适用于小功率微型逆变器。

不含直流母线的串联谐振逆变器

这种拓扑结构同样不需要直流母线和高压电容滤波,变压器源边工作在零电压开通状态,效率较高。该结构不仅适用于光伏逆变器,还可用于户用储能逆变器。

三、非隔离的逆变器拓扑

非隔离逆变器拓扑结构省去了变压器,因此效率更高、体积更小、成本更低。然而,由于没有变压器隔离,可能存在零点偏移和直流分量等问题,需要采取相应的措施进行抑制。以下是两种常见的非隔离逆变器拓扑:

带有MPPT升压的2电平非隔离逆变器拓扑

这种拓扑结构通过带有单路或多路MPPT并联到直流母线,再通过2电平逆变结构实现组串式逆变器。为了消除直流分量,可以采用交流或直流旁路方式。

带有旁路二极管的BOOST双模式非隔离逆变器拓扑

该结构设计巧妙,BOOST电路不仅将PV输入升压成DC电压,还直接升压到工频信号。通过BOOST和逆变两种模式交替工作,可以实现完整的正弦输出。

四、组串式逆变器NPC拓扑

组串式逆变器在光伏系统中应用广泛,NPC三电平逆变器是其中一种常见的拓扑结构。NPC三电平逆变器具有效率高、谐波小等优点。以下是三种NPC三电平逆变器的变体:

I型NPC三电平逆变拓扑

I型NPC三电平拓扑结构相对简单,但存在内外管开关损耗不平衡的问题。

ANPC三电平逆变拓扑

ANPC三电平拓扑通过将两个二极管更换成IGBT,实现了内外管开关损耗的平衡。然而,该拓扑控制较复杂,开关管也较多,系统成本和体积较大。

T型NPC逆变器拓扑

T型三电平拓扑同样使用4个IGBT功率管,但其中处于中性点的是一对背靠背连接的IGBT。该拓扑结构开关损耗平衡,效率高,但功率管的耐压需要与母线电压相同,适用于低压系统或需要更高耐压功率管的实现。

总结而言,光伏逆变器的拓扑结构多种多样,每种拓扑结构都有其独特的优点和适用场景。随着功率器件开关特性和耐压的提升,以及学术界研究的深入,未来仍将有更多逆变器拓扑结构衍生出来,进一步提升应用效率、降低体积和成本。

PLECS 应用示例(77):三相T型逆变器(Three-Phase T-Type Inverter)

三相T型逆变器在PLECS中的应用示例展示了以下关键点和特性

电路与应用

电路结构:该示例展示了一个用于并网应用的三相T型逆变器电路图。额定功率与转换:逆变器额定功率为22 kVA,能将800 V直流母线电压转换为三相60 Hz、480 V的交流配电。

器件选择与热性能评估

SiC MOSFET:采用Wolfspeed SiC MOSFET,展示了如何选择不同额定电压、额定电流和RdsOn值的器件来评估其热性能。热模型:每个器件都被建模为具有定制掩模配置的子系统,包括MOSFET、体二极管以及热模型。

控制器设计

解耦同步参考系电流控制器:用于生成dq电压参考,并通过独立的PI调节器将逆变器输出电流调节至设定点。去耦前馈项与PLL:使用简单的同步参考帧锁相环测量电压参考相位角,转换为三相电压参考,馈送到调制器。

调制方法与损耗分析

调制器组件:实现SPWM、SVPWM、THIPWM、THZSPWM和DPWM等多种调制方法,以比较其对半导体损耗的影响。损耗比较:DPWM在单位功率因数下损耗最低,而SPWM和SVPWM在功率因数角接近0.5时显示出较高的损耗。

系统级电气规格与参数扫描

试验控制器设置:通过操纵控制器设置、调制方案、开关频率、死区时间、控制器增益等参数,分析系统级电气规格。参数扫描:确定设计决策如何在一系列操作条件下影响转换器性能的有效方法。

热建模能力与应用

热建模:该模型突出了PLECS的热建模能力。研究示例:可以作为研究控制器设计对其他拓扑结构效率影响的例子。

基于储能变流器的微电网并/离网无缝切换

基于储能变流器的微电网并/离网无缝切换

微电网作为智能配电网发展的关键环节,其关键作用在于具有并网与离网的无缝切换功能,这一功能保证了在大电网断电时,系统的关键负荷能够持续供电。通常,储能变流器(PCS)是实现微网系统并网/孤岛运行模式无缝切换的核心设备。

一、储能逆变器运行策略

并网运行的控制策略(P-Q运行模式)

在并网模式下,储能换流器依靠大电网提供的电压和频率的刚性支撑。电网中的负荷波动、电压和频率的扰动都由大电网承担,分布式电源不需要考虑电压和频率调节,即采用PQ控制模式。此时,储能换流器采用交流电网电压的有功无功解耦的控制策略,采取双闭环控制方式:外环采取功率控制,内环采用电流控制方式。

独立运行策略(V-F控制)

当大电网发生故障时,为了保证微网系统中的关键负荷不断电,智能微电网系统可根据需要进行独立运行。在独立运行时,储能变流器相当于系统中的一个电源,为微网系统提供合适的电压和频率。此时,储能变流器以电压电流双闭环模式(V/F模式)运行,为其他若干从逆变器提供稳定的电压和频率基准。

二、无缝切换的实现

基于储能变流器的微电网并/离网无缝切换主要包括两个过程:并网切换到独立运行和独立运行切换到并网运行。

并网切换到独立运行

当储能换流器在并网状态运行时,其控制策略为PQ控制。当交流电网发生故障时,并网点PCC处的电压会迅速下降,微电网接口处的保护装置会检测到这一扰动,并使PCC处的静止开关动作跳开,从而微电网和配电网形成两个单独的系统。此时,PCS的控制策略迅速切换为VF控制,为微电网提供稳定的电压和频率。

切换过程的关键点

检测到电网故障并迅速动作:保护装置需要快速准确地检测到电网故障,并触发切换动作。

控制策略的快速切换:PCS需要在极短的时间内从PQ控制切换到VF控制,以保证微电网的稳定运行。

独立运行切换到并网运行

储能换流器从独立运行切换到并网运行是一个复杂的协调同期过程。这涉及到V-F运行策略的换流器与多个PQ模式的分布式电源换流器之间的协调。

切换过程的关键步骤

频率同期调节:通过交流电网锁相环输出的信号来控制储能换流器PCS的调制频率,使微电网的频率与大电网的频率保持一致。

相位同期调节:比较交流电网电压相位与微网电压相位,通过调节获得储能换流器的调制相角,使两者相位同步。

电压幅值调节:比较交流电网电压幅值与微电网的电压幅值,通过调节PCS的VF运行策略下的电压外环参考值,使两者电压幅值相等或接近。

同期并网:在频率、相位和电压幅值都满足条件后,闭合PCC处的静止开关,实现微电网与大电网的并网运行。

三、无缝切换的挑战与解决方案

在采用主从控制的微网系统中,实现并网/孤岛模式之间的无缝切换面临一些挑战,尤其是电网突发性故障掉电的非计划性孤岛情况。此时,公共连接点(PCC)中流过的电流通常不为零,快速的强迫切换势必会造成瞬态冲击,出现电压或频率闪变。

解决方案

预同步技术:在切换前进行预同步操作,使微电网的频率、相位和电压幅值与大电网接近或一致,减少切换时的瞬态冲击。平滑过渡控制策略:设计平滑过渡控制策略,如采用软切换技术,在切换过程中逐渐调整控制参数,使切换过程更加平稳。智能保护与切换装置:采用智能保护与切换装置,能够快速准确地检测到电网故障并触发切换动作,同时保证切换过程中的安全性和可靠性。

综上所述,基于储能变流器的微电网并/离网无缝切换是实现微电网稳定运行和可靠供电的关键技术之一。通过合理的控制策略和切换技术,可以有效地解决无缝切换过程中的挑战和问题,为微电网的广泛应用提供有力支持。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言