发布时间:2025-07-24 07:50:48 人气:
逆变器是什么
逆变器是什么?逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻辑和滤波电路组成。广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。如果你对逆变器是什么还有疑问的话,不妨随我一起来了解下吧!
逆变器是什么
逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
逆变器又称逆变电源,是一种电源转换装置,可将12V或24V的直流电转换成240V、50Hz交流电或其它类型的交流电。它输出的交流电可用于各类设备,最大限度地满足移动供电场所或无电地区用户对交流电源的需要。
逆变器特点
1、转换效率高、启动快;
2、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能;
3、物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;
4、带负载适应性与稳定性强。
逆变器作用
逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。
广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等 。
简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。
逆变器使用范围
1.使用办公设备(如:电脑、传真机、打印机、扫描仪等)
2.使用生活电器(如:游戏机、DVD、音响、摄像机、电风扇、照明灯具等)
3.或需要给电池(手机、电动剃须刀、数码相机、摄像机等电池)充电时
逆变器工作原理
1、全控型逆变器工作原理:为通常使用的单相输出的全桥逆变主电路,交流元件采用IGBT管Q11、Q12、Q13、Q14。并由PWM脉宽调制控制IGBT管的导通或截止。
当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。由于LC交流滤波器作用,使输出端形成正弦波交流电压。
当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。
2、半控型逆变器工作原理:半控型逆变器采用晶闸管元件。改进型并联逆变器的主电路如图4所示。图中,Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。这样,Th1与Th2换流,然后电容器C又反极性充电。如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。
在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。D1和D2是2只反馈二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。
逆变器分类
1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。
2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。
3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。
4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。
5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。
6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。
7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。
8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。
9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。
10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。
逆变器价格
300瓦是750元左右,600瓦1300元左右,也有价格低一些的。 逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。
注:此价格仅供参考!由于地域不同,当然价格也会有所差异。
海豹搬家
一文看懂逆变器的17种主要类型
逆变器的17种主要类型
逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:
一、按输入源分类
电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。
电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。
二、按输出相位分类
单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。
三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。
三、按换向技术分类
线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。
强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。
四、按连接方式分类
串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。
并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。
半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。
全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。
三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。
五、按操作模式分类
独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。
并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。
双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。
六、按输出波形分类
方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。
准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。
纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。
七、按输出电平数量分类
两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。
多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。
以下是部分逆变器的展示:
综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。
逆变器原理
逆变器原理
逆变器是一种将直流电(DC)转换为交流电(AC)的装置。它主要由逆变桥、控制逻辑和滤波电路三部分组成,能够将蓄电池、干电池、太阳能电池等直流源提供的电能转换为交流电,供交流负载使用。逆变器在不间断电源(UPS)、太阳能发电转换等领域有着广泛的应用。
一、逆变桥的工作原理
逆变桥是逆变器的核心部分,它负责将直流电转换为交流电。逆变电路主要包括半桥逆变电路、全桥逆变电路和推挽逆变电路三种类型。
半桥逆变电路
原理图:
工作原理:半桥逆变电路由两个开关管V1和V2组成,它们的栅极信号在一周期内各半周正偏、半周反偏,两者互补。输出电压uo为矩形波,幅值为Um=Ud/2。具体工作过程如下:
当V1导通、V2截止时,电流途径为V1->L->R->C2。
当V1、V2均截止时,由于电感L的作用,电流不能突变,此时电流途径为L->R->C2->VD2->L,L作为能量提供源。
当V1截止、V2导通时,电流途径为C1->R->L->V2,此时uo值为负。
当V1、V2再次截止时,电流途径为C1->R->L->VD1->C1,L仍然作为能量提供源。
全桥逆变电路
原理图:
工作原理:全桥逆变电路由四个开关管和四个续流二极管构成两个桥臂,可看成两个半桥电路的组合。同一桥臂的两个开关器件不能同时导通,否则会导致Ud短路。V3的基极信号与V1相差θ(0<θ<180)。输出电压为输入电压Ud。具体工作过程如下:
当V1、V4导通,V2、V3截止时,电流途径为V1->R->L->V4。
当V1导通,V2、V3、V4均截止时(V3的基极信号与V1相差θ),电流途径为V1->R->L->VD3->V1。
当V1、V2、V3、V4均截止时,uo为0。
当V2、V3导通,V1、V4截止时,电流途径为V3->L->R->V2。
推挽逆变电路
原理图:
工作原理:推挽逆变电路通过交替驱动两个IGBT,经变压器耦合给负载加上矩形波交流电压。两个二极管提供无功能量的反馈通道。当变压器匝比为1:1时,uo和io波形及幅值与全桥逆变电路完全相同。推挽逆变电路相对于半桥和全桥逆变电路的特点包括:比全桥电路少用一半开关器件,比半桥电路电压利用率高,但V1、V2承受的电压为2Ud,比全桥电路高一倍。
二、控制逻辑
逻辑控制电路负责控制各个IGBT管子的开关,只有在正确的开关控制下,才能得到所需的波形。逻辑电路的实现方式有多种,具体设计取决于逆变器的应用场景和性能要求。
三、滤波电路
滤波电路用于对逆变桥输出的交流电进行滤波,以去除高频谐波成分,得到更加平滑的交流电输出。滤波电路的设计需要根据逆变器的输出功率和负载特性进行综合考虑。
综上所述,逆变器通过逆变桥将直流电转换为交流电,并通过控制逻辑和滤波电路对输出波形进行控制和优化。不同类型的逆变电路具有不同的特点和应用场景,用户可以根据实际需求选择合适的逆变器类型。
通信逆变器全桥与半桥电路的差别
通信逆变器,一种将直流转换为交流的电气设备,常与通信系统和基站机柜配合使用。全桥与半桥是通信逆变电源内部驱动电路的两种结构形式。
全桥逆变器由四个驱动管轮流工作于正弦波的各个波段,而半桥逆变器则由两个驱动管轮流工作。这种工作方式在整流电路中更易理解。相比半桥逆变器,全桥逆变器的开关电流减半,使其在大功率应用中具有显著优势。例如,宝威特的大功率通信逆变电源采用全桥逆变器,以实现输入输出间的电气隔离并获得合适的输出电压幅值。
半桥逆变器的原理图与半桥整流电路相似,通常采用共阴极或共阳极接法的晶闸管。这类逆变器适用于较低负载的通信逆变器,如1KVA至2KVA的范围,成本相对较低,足够满足这一功率段的需求。
因此,全桥和半桥的选择与通信逆变电源的功率紧密相关。大功率应用应选用全桥逆变器,而小功率应用则更适合半桥逆变器。
单相逆变器的电路原理
单相逆变器的电路原理
逆变器的工作原理是通过功率半导体开关器件的导通和关断作用,把直流电能变换成交流电能。单相逆变器的基本电路主要包括推挽式、半桥式和全桥式三种,虽然它们的电路结构有所不同,但工作原理相似。以下是对这三种电路原理的详细阐述:
一、推挽式逆变电路
推挽式逆变电路由两只共负极连接的功率开关管和一个一次侧带有中心抽头的升压变压器组成。升压变压器的中心抽头接直流电源正极,两只功率开关管在控制电路的作用下交替工作,输出方波或三角波的交流电。
优点:由于功率开关管的共负极连接,使得该电路的驱动和控制电路可以比较简单。另外,由于变压器具有一定的漏感,可限制短路电流,从而提高电路的可靠性。缺点:变压器效率低,带感性负载的能力较差,不适合直流电压过高的场合。二、半桥式逆变电路
半桥式逆变电路由两只功率开关管、两只储能电容器和耦合变压器等组成。该电路将两只串联电容的中点作为参考点。当功率开关管VT1在控制电路的作用下导通时,电容C1上的能量通过变压器一次侧释放;当功率开关管VT2导通时,电容C2上的能量通过变压器一次侧释放。VT1和VT2轮流导通,在变压器二次侧获得交流电能。
优点:结构简单,由于两只串联电容的作用,不会产生磁偏或直流分量,非常适合后级带动变压器负载。缺点:当该电路工作在工频(50Hz或60Hz)时,需要较大的电容容量,使电路的成本上升。因此,该电路更适合用于高频逆变器电路中。三、全桥式逆变电路
全桥式逆变电路由四只功率开关管和变压器等组成。该电路克服了推挽式逆变电路的缺点,功率开关管Q1、Q4和Q2、Q3反相,Q1、Q3和Q2、Q4轮流导通,使负载两端得到交流电能。
优点:克服了推挽式逆变电路的缺点,适用于各种负载场合。应用:在实际应用中,全桥式逆变电路常用于需要高输出电压和电流的场合。四、逆变器波形转换过程
逆变器将直流电转换成交流电的转换过程涉及多个步骤。半导体功率开关器件在控制电路的作用下以高速开关,将直流切断,并将其中一半的波形反向而得到矩形的交流波形。然后,通过电路使矩形的交流波形平滑,得到正弦交流波形。
五、不同波形单相逆变器优缺点
方波逆变器:
优点:线路简单,价格便宜,维修方便。
缺点:调压范围窄,噪声较大,带感性负载时效率低,电磁干扰大。
阶梯波逆变器:
优点:波形类似于正弦波,高次谐波含量少,能满足大部分用电设备的需求。整机效率高。
缺点:线路较为复杂,使用的功率开关管较多,电磁干扰严重,存在谐波失真。
正弦波逆变器:
优点:输出波形好,失真度低,干扰小,噪声低,适应负载能力强,保护功能齐全,整机性能好,效率高。
缺点:线路复杂,维修困难,价格较贵。
综上所述,单相逆变器通过不同的电路结构实现将直流电能转换为交流电能的功能。在实际应用中,应根据具体需求选择合适的逆变器类型和电路结构。
逆变器的分类
逆变器是一种将直流电能转换为交流电能的装置,其分类方式多种多样,以下是逆变器的详细分类:
1. 按输出交流电能的频率分
工频逆变器:频率为50~60Hz的逆变器,适用于大多数家用电器和工业设备。中频逆变器:频率一般为400Hz到十几kHz,常用于特定工业应用,如航空电源。高频逆变器:频率一般为十几kHz到MHz,适用于高频信号处理和小型化设备。2. 按输出的相数分
单相逆变器:输出单相交流电,适用于家用和小型工业设备。三相逆变器:输出三相交流电,适用于大型工业设备和电力系统。多相逆变器:输出多于三相的交流电,用于特定的高性能应用。3. 按输出电能的去向分
有源逆变器:将电能向工业电网输送,常用于可再生能源发电系统。无源逆变器:将电能输向某种用电负载,如家用电器或工业设备。4. 按主电路的形式分
单端式逆变器:结构简单,但输出能力有限。推挽式逆变器:输出能力较强,适用于中等功率应用。半桥式逆变器:结构相对复杂,但性能稳定,适用于较高功率应用。全桥式逆变器:输出能力最强,适用于大功率应用。5. 按主开关器件的类型分
晶闸管逆变器:属于“半控型”逆变器,不具备自关断能力。晶体管逆变器:包括“全控型”逆变器,如电力场效应晶体管和绝缘栅双极晶体管(IGBT),具有自关断能力。6. 按直流电源分
电压源型逆变器(VSI):直流电压近于恒定,输出电压为交变方波。电流源型逆变器(CSI):直流电流近于恒定,输出电流为交变方波。7. 按输出电压或电流的波形分
正弦波输出逆变器:输出电压或电流波形接近正弦波,适用于对波形要求较高的负载。非正弦波输出逆变器:输出电压或电流波形为非正弦波,如方波、梯形波等,适用于对波形要求不高的负载。8. 按控制方式分
调频式(PFM)逆变器:通过调节频率来控制输出电压或电流。调脉宽式(PWM)逆变器:通过调节脉冲宽度来控制输出电压或电流,具有更高的效率和更好的性能。9. 按开关电路工作方式分
谐振式逆变器:利用谐振原理进行工作,具有高效率和小体积的优点。定频硬开关式逆变器:开关频率固定,但开关过程中存在较大的损耗。定频软开关式逆变器:开关频率固定,但采用软开关技术,减小了开关过程中的损耗。10. 按换流方式分
负载换流式逆变器:通过负载来实现换流,适用于特定应用。自换流式逆变器:具有自换流能力,无需外部负载即可实现换流,适用于大多数应用。以下是逆变器的一种常见类型——IGBT逆变器的示例:
综上所述,逆变器具有多种分类方式,每种分类方式都反映了逆变器在不同方面的特性和应用。在选择逆变器时,需要根据具体的应用场景和需求来选择合适的类型。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467