发布时间:2025-06-10 06:41:01 人气:
分布式并网逆变器
在光伏并网项目中,逆变器的主要作用是将直流电压转换成适合并网的交流电压,而变压器的作用并非总是将电压升高。以下是对这一过程的详细解释:
逆变器的作用:
逆变器负责将光伏组件产生的直流电转换为交流电,这是并网发电的关键步骤。转换后的交流电电压通常设定为适合当地电网接入的标准,如220V或380V。变压器的作用:
变压器在电网中主要用于电压的变换,但并非总是升压。在分布式并网项目中,尤其是“自发自用,余电上网”的模式下,多余的电量直接被周围用户消耗,因此不需要通过变压器升压到上一级电网。只有当发出的电量需要远距离输送至其他地区时,才需要通过变压器进行升压,以减少输电损耗并提高输电效率。例如,西部地区的大型电站可能需要将电压升压后进行长距离输送。总结:逆变器在光伏并网项目中负责将直流电转换为适合并网的交流电,而变压器的作用取决于具体的并网需求和电网结构。在大部分分布式并网项目中,变压器并非用于升压,而是根据实际需要可能进行电压的适当调整或直接接入电网。
并网逆变器有哪些品牌
并网逆变器的品牌有:
1. 华为
2. 阳光电源
3. 许继电气
4. ABB集团
5. 西门子
并网逆变器是一种将直流电转换为交流电的电力电子设备,广泛应用于太阳能发电系统、风能发电系统等新能源系统中,在智能电网、分布式能源管理系统中发挥着关键作用。不同品牌的并网逆变器有着不同的性能特点和适用范围。下面简单介绍一些主要品牌及其特点:
华为:华为是全球领先的通信技术解决方案提供商,其并网逆变器产品以其高效率、高可靠性和智能控制特性而受到用户青睐。此外,华为还拥有强大的研发团队和完善的售后服务体系。
阳光电源:是国内知名的电力电子产品制造商,其并网逆变器在市场上有着广泛的应用。阳光电源的产品具有良好的稳定性、安全性和高效性,可以满足不同用户的需求。
许继电气和ABB集团等也是国际上知名的电力电子设备和能源管理方案提供商,其并网逆变器产品在市场上也占有重要地位。这些公司的产品具有先进的技术和卓越的性能,能够满足不同用户的需求。此外,西门子等大型跨国公司也在这一领域积极研发和推广其产品。并网逆变器的选择需要根据具体的工程需求和预算来决定,建议在选购时充分了解产品的性能特点和售后服务情况。
一文读懂:微型逆变器与组串式逆变器的区别
光伏并网逆变器是光伏系统的核心部件,主要功能是将光伏组件产生的直流电转换为适合电网要求的交流电。目前,分布式光伏领域常见的逆变器类型有微型逆变器和组串式逆变器。
微型逆变器对每块或多块光伏组件进行独立的最大功率点跟踪(MPPT),并对组件输出功率进行精细化调节及监控,通常功率在4kW以下。而组串式逆变器对一串或多串光伏组件进行单独的MPPT,功率范围则在1.5kW至500kW之间。
微型逆变器与组串式逆变器在产品拓补结构与电路设计上存在本质差异。微型逆变器采用单组件独立或并联输入设计,而组串式逆变器则采用多组件串联输入设计。这导致两者在运行电压、系统综合效率、运维方式及安装位置等方面存在显著不同。
在运行电压方面,微型逆变器系统中组件以并联方式连接,直流电压不超过120V;而组串式逆变器系统为串联电路,系统运行时电压累计可达600V至1000V。
就系统综合效率而言,微型逆变器每块组件都有独立的MPPT,实现对每块组件的独立追踪,精确追踪功率最大输出点,避免“短板效应”。相反,组串式逆变器的MPPT接入单个或多个“组串”,可能影响单块组件的发电情况,从而影响整串组件的发电效率。
运维方式上,微型逆变器实现组件级控制,运维时可查看每块组件的详细信息,如位置及发电情况。而组串式逆变器进行组串级控制,运维时只能看到整串组件的总体信息。
安装位置方面,微型逆变器模块化设计,体积小、重量轻,可直接安装在光伏支架上,实现即插即用,安装灵活。而组串式逆变器通常安装在某一串组件下方,采用固定或抱箍式安装。
综上所述,微型逆变器和组串式逆变器各有优势和适用场景。在选择逆变器时,应根据具体需求和环境条件,因地制宜选择合适的逆变器类型。组串式逆变器因其成熟可靠的技术和成本优势,在分布式光伏市场应用广泛。而微型逆变器在技术进步的推动下,其单瓦成本也在不断下降,未来将在更多场景中得到应用,以满足对光伏电站安全、效率及智能化运维的需求。
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
分布式光伏逆变器怎么样选?
怎样选择分布式光伏逆变器?首先,从分布式光伏的应用场景出发来匹配逆变器。家庭屋顶或者庭院,装机容量小,一般选择单相或三相并网的组串式逆变器;屋顶面积过大时选择三相的逆变器。工商业屋顶,复杂的山地和大棚项目,针对朝向不规则,易发生局部遮挡情况,装机容量较大,低压或中压多种并网电压的场景,一般选择三相组串式逆变器。对于西北地区的大型地面和荒漠电站来说,建议使用集中箱式逆变器。
选择逆变器中的高效发电是关键。逆变器的转换效率和MPPT效率这两个指标,会影响逆变器的发电量,可延长发电时间,从而提高发电量。逆变器的转换效率,就是在最好的情况下的最佳表现。加权效率,是逆变器的综合表现。逆变器能够实现高效发电是综合体现,加权效率更具有制造意义。另一个关键指标是MPPT效率,有动态和静态两个战略。目前,静态MPPT效率的算法没有多大问题,大部分厂家都能够达到。关键是动态MPPT效率,在逆变器实际的工作环境中光照、温度等条件是不断变化的。
分布式光伏系统因为离用户侧距离近,安全可靠成为选择逆变器的重要因素。实现组串监控,能够对每一个组串进行精细化的监控,及时发现线路故障、组件故障、遮挡等问题,减少故障定位时间。逆变器有防护功能,要能够防火灾,如彩钢瓦屋顶和山地场景易发生火灾;能够防雷击,如屋顶和山地等场景易多发雷暴天气;要能够防PID和防触电,如渔光和农光互补场景经常有运维或工作的人员。逆变器的散热设计,电子器件寿命10℃法则:器件环境温度每升高10℃,寿命减少一半。要考虑逆变器的工艺设计和期间选型,有了好的设计,在进行大量的实验验证,像防水、防尘、高低温等都是非常有必要的。
选择逆变器要考虑电网友好性。逆变器在光伏系统中,是将光能转换成电能的重要工具,前面接的是光,后面接的是电网。逆变器电网友好性有三个指标,功率功率因数、电流谐波、直流分量。功率因数PF,正常情况下PF=1最理想,电流谐波THDi越小,越接近正弦,直流分量DCI,越小越理想。
智能运维针对不同的场景选择不同监控方案,有远程监控、在线客服、远程运维三种不运维方式。智能运维能够及时发现和解决问题,提高电站的运行效率。
分布式光伏并网发电系统是由哪几部分构成的?
分布式光伏发电系统主要包括光伏组件、光伏并网逆变器和双向计量电能表三部分。光伏组件作为系统的核心部件,负责将太阳能转化为电能。其性能直接影响系统的发电效率。光伏并网逆变器则将光伏组件产生的直流电转换为交流电,使其能够接入电网。双向计量电能表用于记录光伏系统向电网输送的电量和从电网获取的电量,实现电能的双向计量。这一系统设计使得分布式光伏能够高效、安全地并网发电,为用户提供清洁、稳定的能源供应。
光伏组件主要由太阳能电池板构成,这些电池板通过串联或并联的方式连接,形成发电阵列。太阳能电池板通常采用单晶硅、多晶硅或薄膜技术制造,具有较高的光电转换效率。组件的安装角度和朝向需要根据当地的地理位置和气候条件进行优化,以最大化太阳能的吸收。
光伏并网逆变器是连接光伏组件与电网的关键设备。它不仅将直流电转换为交流电,还具有防孤岛保护、短路保护、过电压保护等多种功能。并网逆变器的性能直接影响系统的稳定性和安全性。近年来,随着技术的进步,逆变器的效率和可靠性得到了显著提升。
双向计量电能表是连接用户与电网的重要设备。它不仅记录光伏系统产生的电力,还能够监测电网向用户供电的情况。双向计量电能表采用先进的电子技术,能够实现准确的计量和远程数据传输。通过电能表的数据,用户可以了解光伏发电和用电的情况,有助于优化能源管理。
分布式光伏发电系统通过合理配置光伏组件、光伏并网逆变器和双向计量电能表,实现了太阳能的高效利用和电网的稳定运行。这一系统的应用不仅有助于减少碳排放,还能为用户提供清洁、稳定的能源供应,具有广阔的发展前景。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467