Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器电抗器损耗

发布时间:2025-05-31 14:40:58 人气:



电抗器的作用电抗器的分类

电抗器可以把电能通过自身变成磁能,而且会将能量储存起来,此外,电抗器还可以控制电流的增减变化。电抗器的主要功能就是这样,可是根据它的功能,人们将电抗器用作不同的地方,使它的用途更加广泛。

电抗器实质上是一个无导磁材料的空心线圈。它可以根据需要布置为垂直、水平和品字形三种装配形式。在电力系统发生短路时,会产生数值很大的短路电流。如果不加以限制,要保持电气设备的动态稳定和热稳定是非常困难的。因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。接下来小编为大家介绍电抗器的作用及电抗器的分类。

电抗器的作用

1、轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压;

2、改善长输电线路上的电压分布;

3、使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻了线路上的功率损失;

4、在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列;

5、防止发电机带长线路可能出现的自励磁谐振现象;

6、当采用电抗器中性点经小电抗接地装置时,电抗器。

电抗器的分类

1、并联电抗器:发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。并联电抗器里面通过的交流,并联电抗器的作用是补偿系统的容抗。通常与晶闸管串联,可连续调节电抗电流。

2、串联电抗器:里面通过的是交流,串联电抗器的作用是与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。

3、调谐电抗器:里面通过的是交流电,串联电抗器的作用是与电容器串联,对规定的n次谐波分量构成串联谐振,从而吸收该谐波分量,通常n=5、7、11、13、19。

4、输出电抗器:它的作用是限制电机连接电缆的容性充电电流及使电机绕组上的电压上升率限制在54OV/us以内,一般功率为4-90KW变频器与电机间的电缆长度超过50m时,应设置输出电抗器,它还用于钝化变频器输出电压(开关的陡度),减少对逆变器中的元件(如IGBT)的扰动和冲击。

5、输入电抗器:它的作用是限制变流器换相时电网侧的电压降;抑制谐波以及并联变流器组的解耦;限制电网电压的跳跃或电网系统操作时所产生的电流冲击。当电网短路容量与变流器变频器容量比大于33:1时,输入电抗器的相对电压降,对单象限工作为2%,四象限为4%。当电网短路电压大于6%时,允许输入电抗器运行。对于12脉动整流单元,至少需要一相对电压降为2%的网侧进线电抗器。输入电抗器主要应用于工业/工厂自动化控制系统中,安装在变频器、调速器与电网电源输入电抗器之间,用于抑制变频器、调速器等产生的浪涌电压和电流,最大限度的衰减系统中的高次谐波及畸变谐波。

6、限流电抗器:限流电抗器一般用于配电线路。从同一母线引出的分支馈线上往往串有限流电抗器,以限制馈线的短路电流,并维持母线电压,不致因馈线短路而致过低。

电抗器在变频器中的应用

1、输入电抗器的作用

用来限制电网电压突变和操作过电压引起的电流冲击,平滑电源电压中包含的尖峰脉冲,或平滑桥式整流电路换相时产生的电压缺陷, 有效地保护变频器和改善功率因数,它既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染。

2、输出电抗器的作用

输出电抗器主要作用是补偿长线(50-200m)分布电容的影响,并能抑制输出谐波电流,提高输出高频阻抗,有效抑制dv/dt.减低高频漏电流,起到保护变频器,减小设备噪声的作用。电容器在补偿功率的时候,往往会受到谐波电压和谐波电流的冲击,造成电容器损坏和功率因数降低,为此,需要在补偿的时候进行谐波治理。

3、直流电抗器的作用

直流电抗器接在变频系统的直流整流环节与逆变环节之间,主要用途是将叠加在直流电流上的交流分量限定在某一规定值,保持整流电流连续,减小电流脉冲值,使逆变环节运行更稳定及改善变频器的功率因数。

编辑总结:关于电抗器的作用及电抗器的分类就介绍到这里了,希望对大家有所帮助。想了解更多相识,可以关注我资讯。

直流电抗器的作用

直流电抗器的作用主要包括以下几点:

防止逆变器换流失败:直流电抗器串联在换流站每一极上,有助于确保逆变器在换流过程中的稳定性,防止因电流或电压波动导致的换流失败。

降低直流线路中的电压和电流谐波:通过其电感特性,直流电抗器能有效滤除直流线路中的电压和电流谐波,提高电力系统的稳定性和电能质量。

降低纹波系数:直流电抗器能够减小直流电流中的纹波成分,使得电流更加平稳,有利于保护电力设备和提高系统效率。

限制线路短路时整流器中的电流:在直流线路发生短路故障时,直流电抗器能够迅速限制整流器中的电流,防止电流过大对设备和系统造成损坏。

此外,直流电抗器还能将功率因数提高到0.9以上,有助于改善电力系统的功率因数,减少无功损耗。同时,由于其体积较小,许多变频器已将直流电抗器直接安装在变频器内,以进一步提高系统的性能和稳定性。如果同时配有交流电抗器和直流电抗器,则可将变频调速系统的功率因数提高到0.95以上,进一步优化电力系统的能效表现。

逆变焊机逆变焊割优缺点

逆变焊割技术凭借其一系列优势逐渐被广泛应用。首先,它的显著优点在于体积小巧、重量轻,节约了制造材料,携带和移动非常方便。由于逆变器的工作频率高达工频的300-2000倍,这使得变压器和电抗器的体积和重量大大减小,使得设备本身轻便,仅为传统焊机的1/10至1/5,便于生产和运输。

其次,逆变焊割设备具有节能和高效的特点。由于体积和重量的减小,功率损耗大幅减少,逆变器的有效功率输出可高达82%至93%,远超传统焊割设备的40%至60%。这不仅节省了电力资源,也提高了工作效率。

此外,逆变焊割设备的动特性优良,控制灵活。采用电子驱动半导体元件,能够实现精确的电流控制,提高焊接精度,适应各种弧焊方法,显著优于传统设备的粗略调节方式,从而提升焊接质量。

然而,逆变焊割设备也存在一些缺点,如电子元器件多,结构复杂,生产调试过程复杂。尽管如此,从数据对比来看,逆变焊机在效率、工艺性能、重量和噪声等方面都有显著优势,与传统焊机相比,其性能价格比更高,且能有效降低能耗和材料消耗。

随着节能减排要求的提升,逆变焊割设备的市场份额在全球范围内正在快速增长。据估计,如果我国能将逆变焊割设备的使用率提高,将带来巨大的节能和环保效益,包括减少煤炭消耗、二氧化碳排放以及节省大量金属资源。

逆变器并机环流问题及解决

逆变器并机环流是指多台逆变器并联运行时,在逆变器之间产生的不经过负载的电流。环流问题会带来诸多不良影响。

一、环流产生原因它可能由逆变器输出电压的幅值、相位、频率不一致引起,也可能是连接线路阻抗不同造成的。幅值差异会使高幅值电压向低幅值电压处流动形成环流;相位不同也会产生电位差导致环流;频率不一致同样会破坏并联系统的平衡。

二、环流带来危害环流会增加逆变器的损耗,降低系统效率,还可能导致逆变器过热,影响其使用寿命,严重时甚至可能损坏逆变器。

三、解决方法可以采用精确的控制策略,使逆变器输出电压的幅值、相位和频率保持一致;也可以在逆变器输出端增加电抗器,增大环流回路的阻抗,抑制环流;还可以通过检测环流大小,动态调整逆变器的输出参数来减少环流。

变频器如何选配电抗器

电抗器在变频器系统中的应用

随着电力电子技术的迅速发展,从20世纪90年代以来交流变频调速已成为电气传动的主流,其应用范围日益广泛。但是,由于变频器被使用在各种不同的电气环境,若不采取恰当的保护措施,就会影响变频器运行的稳定性和可靠性。

电抗器能够限制电网电压突变和操作过电压引起的电流冲击,有效地保护变频器和改善其功率因数。接入与未接入进线电抗器时,变频器输入电网的谐波电流的情况如图1所示。从图1可以看出,接入电抗器后能有效地抑制谐波电波。

直流电抗器接在变频系统的直流整流环节与逆变环节之间,LDC能使逆变环节运行更稳定,及改善变频器的功率因数。输出电抗器接在变频器输出端与负载(电机)之间,起到抑制变频器噪声的作用。三种电抗器在变频器中的连接如图2所示。

需要安装进线电抗器的场合

进线电抗器既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染,当电源容量很大时,更要防止各种过电压引起的电流冲击,因为它们对变频器内整流二极管和滤波电容器都是有害的。因此接入进线电抗器,对改善变频器的运行状况是有好处的。

在下列场合一定要安装进线电抗器,才能保证变频器可靠的运行:电源容量为600kVA及以上,且变频器安装位置离大容量电源在10m以内;三相电源电压不平衡率大于3%;其它晶闸管变流器与变频器共用同一进线电源,或进线电源端接有通过开关切换以调整功率因数的电容器装置。

进线电抗器容量的选择

进线电抗器的容量可按预期在电抗器每相绕组上的压降来决定。一般选择压降为网侧相电压的2%~4%,也可按表1的数据选取。电感量L的计算公式如式(2)所示:L=△UL/(2πfIn)=0.04Uvø/(πfIn)。

进线电抗器压降不宜取得过大,压降过大会影响电机转矩。一般情况下选取进线电压的4%(8.8V)已足够,在较大容量的变频器中如75kW以上可选用10V压降。

直流电抗器和输出电抗器的作用

在有直流环节的变频系统中,在整流器后接入直流电抗器可以有效地改善功率因数,配合得当可以将功率因数提高到0.95。直流电抗器能使逆变器运行稳定,并能限制短路电流,所以很多厂家生产的55kW以上的变频器都随机供应直流电抗器。

输出电抗器的主要作用是补偿长线分布电容的影响,并能抑制变频器输出的谐波,起到减小变频器噪声的作用。有些厂家还提供有输出电抗器与无输出电抗器时,连接电机的导线允许的最大长度。

三相交流进线电抗器的设计计算

选定电抗器的额定电压降ΔUL,再计算出电抗器的额定工作电流In以后,就可以计算电抗器的感抗XL。电抗器的感抗XL由式(3)求得:XL=ΔUL/In(Ω)。

有了以上数据便可以对电抗器进行结构设计。电抗器铁芯截面积S与电抗器压降ΔUL的关系,如式(4)所示:式中:ΔUL——单位V;f——电源频率(Hz);B——磁通密度(T);N——电抗器的线圈圈数;Ks——铁芯迭片系数取Ks=0.93。

电抗器铁芯窗口面积A与电流In及线圈圈数N的关系如式(5)所示:A=InN/(jKA)。式中:j——电流密度,根据容量大小可按2~2.5A/mm2选取;KA——窗口填充系数,约为0.4~0.5。铁芯截面积与窗口面积的乘积关系如式(6)所示:SA=UI/(4.44fBjKsKA×10-4)。

由式(6)可知,根据电抗器的容量UI(=ΔULIn)值,选用适当的铁芯使截面积SA的积能符合式(6)的关系。

为了使进线电抗器有较好的线性度,在铁芯中应有适当的气隙。调整气隙,可以改变电感量。气隙大小可先选定在2~5mm内,通过实测电感值进行调整。

电抗器电感量的测定

铁芯电抗器的电感量和它的工作状况有很大关系,而且是呈非线性的,所以应尽可能使电抗器处于实际工作条件下进行测量。图4所示是测量直流电抗器的电路。在电抗器上分别加上直流电流Id与交流电流I~,用电容C=200μF隔开交直流电路,测 出LDC两端的交流电压U~与交流电流I~,可由式(9)、式(10)式近似计算电感值L。

对于用硅钢片叠制而成的交流电抗器,电感量的测量可用工频电源的交流电压表——电流表法测量,如图5所示。通过电抗器的电流可以略小于额定值,为求准确可以用电桥测量电抗器线圈内 阻rL,每相电感值可按式(11)计算:式中:U——交流电压表的读数(V);I——交流电流表的读数(A);rL——电抗器每相线圈电阻(Ω)。

死区补偿(非线性补偿)方法介绍

死区时间在逆变器中起着关键作用,它是指上桥臂和下桥臂导通与截止之间的时间间隔,避免上、下桥臂同时导通产生短路现象。然而,加入死区时间会导致逆变器性能降低。为了优化死区补偿,本文将详细介绍其原理、仿真模型配置、死区效应以及解决方法。

仿真模型配置涉及逆变器输出与星型连接电抗器的连接,采用闭电流控制方式输出三相电流。在SPWM波形的基础上,模型仿真特别关注优化对象,即死区补偿,输出是否连接电机并不影响优化过程。在低速情况下,由于反电势较小,模型可以近似简化。

带死区的逆变器模型中,三相电感波形显示原始模型产生的电流值存在明显畸变。死区效应表现为:当相电流为正时,下桥臂的体二极管导通导致负脉冲时间偏长;反之,当相电流为负时,上桥臂的体二极管导通导致正脉冲时间变长。此现象在轻载低频情况下更加明显,可能引发电流钳制,加剧电流波形畸变。

针对死区效应,通过调整对应桥臂的占空比来实现补偿,以克服死区对逆变器输出的影响。补偿量的确定和正负补偿的选择成为关键考虑因素。

补偿量可通过Vdead值来计算,公式如下:

[公式]

补偿时机基于输出电流方向的判断,方法涉及转子角度与电流电压相位差的计算,确定Id与Iq的比值。

补偿原理通过将一个周期划分为六个等分区间,每个区间仅有一相电流过零,其他两相电流方向不变。根据电流角度计算补偿量,并应用饱和函数和PI控制器进行动态调整,以有效抑制电流纹波。

最终,仿真结果显示,死区补偿启动后,Id、Iq的纹波得到显著抑制,优化了逆变器的输出性能。通过动态调整补偿量和使用PI控制器,死区补偿方法有效解决了死区效应带来的电流波形畸变问题。

光伏并网逆变器如何提升转换效率?

提升光伏并网逆变器转换效率的关键在于降低损耗,其中IGBT的损耗是决定因素。

适度降低IGBT的开关频率是提升效率的关键。盲目降低频率可能导致电能质量下降,因此需要在保证电能质量的前提下适度降低。

变压器损耗对转换效率影响较大,降低变压器的铜铁损耗是提升效率的有效途径。

电抗器的损耗也对转换效率有重要影响。降低电抗器的感抗,可以有效提升逆变器的转换效率。

古瑞瓦特作为专业的光伏逆变器厂家,能提供更为专业全面的解答和提升转换效率的方案。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言