发布时间:2025-05-16 05:30:06 人气:
【方波逆变器原理】方波逆变器系统基本原理 方波逆变器与正弦波逆变器区别
方波逆变器的基本原理是将直流电能转换为交流电,主要由逆变桥、控制逻辑和滤波电路构成。以下是对方波逆变器系统基本原理及其与正弦波逆变器区别的详细解答:
方波逆变器系统基本原理: 直流到交流的转换:方波逆变器通过逆变桥将直流电能转换为交流电能。 控制逻辑:控制逻辑负责调节逆变过程,确保输出稳定的交流电。 滤波电路:滤波电路用于平滑输出电压波形,尽管方波逆变器输出的主要是方波,但滤波电路可以在一定程度上减少波形中的谐波成分。
方波逆变器与正弦波逆变器的区别: 输出电压波形: 方波逆变器:输出电压波形为方波,质量较差,正向最大值和负向最大值几乎同时产生,可能导致负载和逆变器本身的不稳定。 正弦波逆变器:输出电压波形为正弦波,质量高,失真度低,与市电电网的交流电波形基本一致或更高。 负载适应能力: 方波逆变器:负载能力有限,通常仅为额定负载的40%60%,不能驱动电动机、洗衣机、电冰箱等感性负载。 正弦波逆变器:负载适应能力强,可以满足所有交流负载的需求,对收音机、通讯设备及精密设备的干扰较小。 成本和技术要求: 方波逆变器:线路和控制相对简单,成本较低,对控制芯片和维修技术的要求也较低。 正弦波逆变器:线路和控制相对复杂,对控制芯片和维修技术的要求较高,因此成本也较高。
综上所述,方波逆变器和正弦波逆变器在输出电压波形、负载适应能力和成本技术方面存在显著差异。选择哪种逆变器取决于具体的应用场景和需求。
逆变器原理逆变器原理是什么
逆变器原理如下:
逆变器是一种将直流电转换为交流电的装置。其主要原理和工作机制包括以下几点:
直流电压转换:逆变器首先将Adapter输出的12V直流电压作为输入。
高频高压交流电生成:通过内部电路,特别是使用TL5001芯片等组件,将直流电压转换为高频的高压交流电。TL5001芯片内部包含误差放大器、调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等关键功能部分。
主功率元件的选择:逆变器的主功率元件对其性能至关重要。常用的功率元件包括达林顿功率晶体管、功率场效应管、绝缘栅晶体管和可关断晶闸管等。具体选择取决于系统的容量和电压等级。例如,在小容量低压系统中,MOSFET因其较低的通态压降和较高的开关频率而被广泛使用;而在高压大容量系统中,IGBT模块则更具优势;特大容量系统中,GTO作为功率元件更为合适。
电路组成:逆变器的主要部件包括场效应管或IGBT、变压器、电容、二极管、比较器以及3525之类的主控芯片。此外,交直交逆变过程还涉及整流滤波等步骤。
功率和精度:逆变器的功率大小和精度直接影响其电路的复杂程度。为了满足不同的应用需求,逆变器可能需要进行相应的设计和优化。
综上所述,逆变器通过特定的电路设计和组件选择,实现了将直流电转换为交流电的功能,广泛应用于各种电力电子设备中。
模拟芯片SG3525:PWM驱动设计
SG3525是一款广泛应用的PWM控制器,由多家制造商生产,如ST Microelectronics、Fairchild Semiconductors、On Semiconductors等。它广泛用于DC-DC转换器、DC-AC逆变器、家用UPS系统、太阳能逆变器、电源、电池充电器等众多应用。在进行详细描述和应用前,我们先来看看其框图和引脚布局。
SG3525的引脚介绍如下:
1. 引脚1(反相输入)和2(非反相输入)是板载误差放大器的输入,实现对PWM关联的“反馈”的占空比的增加或减少。
2. Pin1和Pin2用于负反馈,实现输出的稳定。当INV IN和NINV IN电压相等时,SG3525产生的占空比不再变化。通过调整电路输出到INV IN,NINV IN接到VREF,可实现INV IN跟随VREF。通过调整分压比例实现对输出的稳压控制。
3. Pin5连接电容CT再接地,Pin6连接电阻RT再接地,Pin7和Pin5之间接电阻RD用于电容CT放电,决定死区时间。PWM的频率取决于定时电容和定时电阻。定时电容(CT)连接在引脚5和地之间。定时电阻(RT)连接在引脚6和地之间。引脚5和7(RD)之间的电阻决定了死区时间(也会稍微影响频率)。频率与RT、CT和RD的关系如下:
4. 频率公式:RT和RD以Ω为单位,CT以F为单位,f以Hz为单位。RD的典型值在10Ω至47Ω范围内。可用值的范围(由SG3525制造商指定)为0Ω至500Ω。RT必须在2kΩ至150kΩ范围内。CT必须在1nF(代码102)至0.2μF(代码224)范围内。振荡器频率必须在100Hz至400kHz范围内。
5. PIN8是软起动功能,连接在引脚8和地之间的电容提供软启动功能。电容越大,软启动时间越长。这意味着从0%占空比变为所需占空比或最大占空比所需的时间更长。通过调整分压比例实现对输出的稳压控制。
6. PIN16是电压参考部分的输出,SG3525包含一个额定电压为+5.1V的内部电压参考模块,经过调整可提供±1%的精度。此参考通常用于向误差放大器提供参考电压,以设置反馈参考电压。它可以直接连接到其中一个输入,也可以使用分压器进一步降低电压。
7. PIN15是VCC芯片供电引脚,使SG3525运行。VCC必须在8V至35V范围内。SG3525具有欠压锁定电路,当VCC低于8V时,该电路可阻止运行,从而防止错误操作或故障。
8. PIN13是VC驱动电压,引脚13是SG3525驱动器级的电源电压,连接到输出图腾柱级中的NPN晶体管的集电极。因此得名VC。VC必须在4.5V至35V的范围内。输出驱动电压将比VC低一个晶体管的电压降。因此,在驱动功率MOSFET时,VC应在9V至18V的范围内(因为大多数功率MOSFET需要至少8V才能完全导通,并且最大VGS击穿电压为20V)。对于驱动逻辑电平MOSFET,可以使用较低的VC。必须小心确保不超过MOSFET的最大VGS击穿电压。同样,当SG3525输出馈送到另一个驱动器或IGBT时,必须相应地选择VC,同时牢记馈送或驱动设备所需的电压。当VCC低于20V时,通常将VC连接到VCC。
9. PIN12是接地连接,应连接到电路接地。它必须与其驱动的设备共用接地。
10. PIN11和PIN14是输出,驱动信号将从这些输出中获取。它们是SG3525内部驱动器级的输出,可用于直接驱动MOSFET和IGBT。它们的连续电流额定值为100mA,峰值额定值为500mA。当需要更大的电流或更好的驱动时,应使用使用分立晶体管的进一步驱动器级或专用驱动器级。同样,在驱动导致SG3525功率耗散和发热过多的设备时,应使用驱动器级。当以桥式配置驱动MOSFET时,必须使用高低侧驱动器或栅极驱动变压器,因为SG3525仅设计用于低侧驱动。
11. PIN10是高电平时快速关断,通常接低电平。引脚10为关机。当此引脚为低电平时,PWM启用。当此引脚为高电平时,PWM锁存器立即设置。这为输出提供了最快的关机信号。同时,软启动电容器通过150μA电流源放电。关闭SG3525的另一种方法是将引脚8或引脚9拉低。但是,这不如使用关机引脚那么快。因此,当需要快速关机时,必须向引脚10施加高信号。此引脚不应悬空,因为它可能会拾取噪声并导致问题。因此,此引脚通常通过下拉电阻保持在低电平。
12. PIN9为补偿,与PIN1一起用于补偿反馈信号。引脚9为补偿,可与引脚1配合使用,提供反馈补偿。
在了解了每个引脚的功能后,我们来设计一个实际应用电路。为了设计一个以50kHz运行的电路,驱动MOSFET(采用推挽配置),该MOSFET驱动铁氧体磁芯,然后升压高频交流电,然后整流和滤波,以产生290V稳压输出直流电,可用于运行一个或多个CFL。电路设计包含以下参数和步骤:
1. 电源电压已提供,并已接地。VC已连接到VCC。在电源引脚上添加了一个大容量电容器和一个去耦电容器。去耦电容器(0.1μF)应尽可能靠近SG3525。始终在所有设计中使用它。也不要省略大容量电容器,尽管您可以使用较小的值。
2. 引脚5、6和7提供了死区时间。在引脚6和地之间连接RT,在引脚5和地之间连接CT。RD=22Ω,CT=1nF(代码:102),RT=15kΩ。这给出了振荡器频率:由于振荡器频率为94.6kHz,开关频率为0.5*94.6kHz=47.3kHz,这足够接近我们的目标频率50kHz。如果需要50kHz的精度,可以使用电位器(可变电阻器)与RT串联并调整电位器,或者使用电位器(可变电阻器)作为RT,尽管我更喜欢第一种方法,因为它允许微调频率。
3. 引脚8提供了一个小型软启动电容,避免使用过大的软启动,因为使用CFL时,占空比缓慢增加(因此电压缓慢增加)会导致问题。
4. 引脚10通过上拉电阻上拉至VREF。因此,PWM被禁用并且不运行。但是,当开关打开时,引脚10现在处于接地状态,因此PWM被启用。我们利用了SG3525关机选项(通过引脚10),开关就像一个开/关开关。
5. 引脚2连接至VREF,因此电位为+5.1V(±1%)。转换器的输出通过电阻为56kΩ和1kΩ的分压器连接至引脚1。电压比为57:1。在反馈“平衡”时,引脚1处的电压为5.1V,这也是误差放大器的目标-调整占空比以调整引脚1处的电压,使其等于引脚2处的电压。因此,当引脚1处的电压为5.1V时,输出电压为5.1V*57=290.7V,这足够接近我们的290V目标。如果需要更高的精度,可以将其中一个电阻器替换为电位器或与电位器串联,并调整电位器以提供所需的读数。
6. 引脚1和9之间的电阻和电容的并联组合提供反馈补偿。反馈补偿是一个大话题,这里不详细讨论。
7. 引脚11和14驱动MOSFET。栅极上串联有电阻,用于限制栅极电流。栅极至源极的电阻可确保MOSFET不会意外开启。
总之,参考《EDA设计智汇馆高手速成系列_SABER电路仿真及开关电源设计》,也有SG3525的Saber仿真实例。搬运链接:Using the SG3525 PWM Controller - Explanation and Example: Circuit Diagram / Schematic of Push-Pull Converter
逆变器常用芯片有哪些
逆变器芯片:EG8010、EG8025、EG8011、
三相逆变器芯片:EG8030
全桥驱动:EG2126
半桥驱动:EG2113、EG2110、EG2131、EG2104、EG2136、EG2133、EG2134、EG2103、EG2106、EG2181、EG2183、EG3112、EG3113、EG2003、EG3013、EG3014
带SD(使能)功能的半桥驱动:EG27324、EG27325、EG3002、EG3001、EG2130
人体感应:EG0001、EG4002
电源芯片:EG3525、EG1165、EG7500、EG6599、EG3846、EG1611
DC-DC降压芯片:EG1163、EG1187、EG1182、EG1186、EG1185、EG1188
逆变器原理
逆变器原理是将直流电转换为交流电的过程。以下是逆变器原理的详细解释:
基本工作原理:
逆变器采用特定的芯片作为核心控制部件。该芯片内部设有误差放大器、调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等关键功能。主功率元件的选择:
逆变器的主功率元件至关重要,常用的功率元件包括达林顿功率晶体管、功率场效应管、绝缘栅晶体管和可关断晶闸管等。在小容量低压系统中,MOSFET因其较低的通态压降和较高的开关频率而被广泛使用。在高压大容量系统中,IGBT模块因其优势而被采用,特别是在中容量系统中,IGBT占有较大优势。在特大容量系统中,GTO通常作为功率元件。主要部件和功能:
场效应管或IGBT:作为功率开关元件,负责将直流电转换为交流电。变压器:用于升高或降低电压,以满足不同负载的需求。电容:用于平滑直流电,减少电压波动。二极管:用于整流或保护电路。比较器和主控芯片:如3525等,负责控制PWM信号的生成和调节,以确保输出电压和频率的稳定性。交直交逆变过程:
在某些逆变器中,还包含整流滤波部分,用于将交流电转换为直流电,然后再通过逆变器转换为所需的交流电。这一过程称为交直交逆变,适用于需要将市电或其他交流电源转换为特定频率和电压的交流电的应用场景。电路复杂程度与功率大小和精度:
逆变器的功率大小和精度直接关系到电路的复杂程度。更高功率和精度的逆变器需要更复杂的电路设计和更高的元件要求。综上所述,逆变器通过特定的芯片和主功率元件,将直流电转换为交流电,并通过一系列部件和功能实现电压和频率的稳定输出。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467