发布时间:2025-05-04 14:20:15 人气:
3点带你了解储能变流器与逆变器的区别
在电力系统中,储能变流器和逆变器扮演着关键角色,它们在不同的应用场景中展现各自的功能。尽管有时人们会将储能变流器误称为储能逆变器,但这两者在本质上存在显著差异。以下将从三个方面探讨它们之间的区别。
一、工作原理不同
储能变流器的工作原理是将收集到的电能储存于电池中,通过DC/AC双向变流器等元件的转换,将电池中的直流电转换为交流电,实现储能系统与电网之间的电能转换。
逆变器虽然同样将直流电转换为交流电,但其输入电流是定量的,并且需要接入充电电路。
简而言之,储能变流器主要负责电能的存储和释放,属于双向转化;而逆变器仅用于电能的转化,属于单向变化。
二、使用场景不同
1、储能变流器:主要用于电能的存储和释放
(1)农业和商业储能设备:PCS可以将太阳能电池板或风力发电机产生的电能储存起来,以供夜间或低能量产生时使用,降低能源成本。
(2)微电网系统:微电网系统是一种独立于主电网的小型电力系统,PCS可以管理与控制电池储能系统,实现与电网或可再生能源发电设备的互联互通。
(3)电力系统调节:在用电高峰时段向电网供应电能,减轻电网负荷;或在电网负荷不足时,从储能设备中释放电能,提供备用电源。
2、逆变器:适合电能的转化
(1)太阳能电池板:逆变器将太阳能电池板产生的直流电能转化为交流电能,便于家庭和商业用电。
(2)单相电压供电的电器:逆变器可以为空调、制冷机、照明等单相电压供电的电器提供稳定电源。
(3)UPS系统:逆变器在UPS系统中起到关键作用,将直流电转换为交流电,确保在主电源中断时提供连续电力供应。
三、两款产品的优缺点
1、储能变流器
优点:
1)突破局限性:降低天气状况对发电稳定性的影响,提升电网稳定性和品质。
2)提升用电效率:提供稳定、持久的电能供应,避免用电系统故障带来的不便。
3)稳定性:降低用电成本,提高电网稳定性。
缺点:
造价较高,存在一定安装风险,需要严格的安全措施和保护装置。
2、逆变器
优点:
1)转换效率高、启动快:满足家庭、商业或工业用电设备的需求。
2)可靠性高:提供连续的电力供应。
3)带负载适应性与稳定性强。
弊端:
产生能源损耗,降低能源利用率。
总之,储能变流器和逆变器各有优缺点,针对不同的行业都有突出的优势。选择适合的产品,才能满足实际需求。
GB_T 34133储能变流器间谐波检测标准
储能变流器与光伏逆变器的关键差异在于,储能逆变器具备双向能量转换功能,能够实现储能电池与交流电网之间的能量互换,而光伏逆变器仅能单向将光伏板的直流电转换为符合电网要求的交流电。因此,两者在检测标准方面存在一定的区别。
GB/T 34133储能变流器检测标准,涵盖了储能变流器的全面检测内容,大部分与光伏逆变器的检测标准相似,但在电能质量检测部分,对谐波与间谐波的检测提出了更高要求。
GB/T 34133标准要求对谐波与间谐波进行检测,并规定了在10分钟内进行数据统计与运算。面对如此复杂的测试需求,人工操作难以迅速获得结果。为解决这一问题,ZLG致远电子针对该测试需求,基于PA功率分析仪开发了专用测试插件,支持一键测试谐波与间谐波,并能直接生成报表。
图1展示了该专用测试插件的界面。
测试结果以报表形式呈现,如下图所示。表1为电流谐波记录报表,表2为电流间谐波记录报表。
PA功率分析仪具备7通道功率卡槽,最高可达0.01%的精度,能够准确把握被测设备的所有电参数,不仅适用于光伏逆变器和风力变流器的高精度功率、谐波、效率测试,也适合光伏行业特有的1500V高压直流测试。通过配合定制的行业测试插件,可以快速完成各种测试。
图2展示了PA功率分析仪的外观。
储能变流器的结构 储能变流器的参数有哪些
储能变流器(Energy Storage Inverter,简称ESI)由直流侧、逆变器、控制系统和通信模块构成,每部分都有其特定的功能。
直流侧包括电池组、充电器、直流开关和直流滤波电容。电池组作为储能变流器的核心,用于储存电能。充电器负责将交流电转换为直流电并存储到电池组中。直流开关用于控制电池与逆变器的连接与断开。直流滤波电容则用于平滑直流电压,减少电流谐波。
逆变器部分包含逆变器桥、逆变控制器、PWM模块、滤波电容和输出变压器。逆变器桥负责将直流电转换为交流电,逆变控制器则控制逆变桥的开关动作,从而实现对输出电压、电流和频率的调节。滤波电容用于降低输出电压的谐波,提高电路效率。输出变压器则用于调整输出电压至所需等级。
控制系统包括功率控制器、电网连接控制器和电池管理系统(BMS)。功率控制器用于调节逆变器输出功率,以匹配负载需求。电网连接控制器负责控制储能变流器与电网的连接和断开,确保电网稳定和安全。BMS则对电池组的充放电过程进行管理和控制,避免过充或过放,保护电池并延长其使用寿命。
通信模块用于与上位机进行通信、监控和远程控制,实现储能变流器的远程监控和控制,提高系统的可靠性和安全性。
储能变流器的参数涵盖直流输入、电池、输出参数(并网与离网)、通讯情况、基本参数、逆变器保护、逆变器效率和法规及标准九大类。其中,直流输入参数包括输入电压、电流和组串数量设计;电池参数包括电压、容量和接线方式;输出参数(并网)涉及并网和离网两种模式,分别适用于有电网和无电网的环境;通讯情况包括多种通讯接口;基本参数涵盖散热方式、安装方式、防护等级和人机交互等信息;逆变器效率和法规及标准则涉及逆变器的性能和合规性要求。
关于一般储能逆变器出口欧洲,EN 62477标准认证解析
储能逆变器是用于将市电交流电转化为直流电,用于向蓄电池充电并储存,当市电中断时将储存的直流电转化为220伏交流电供家用电器使用。这类产品出口欧洲需符合特定标准。
IEC/EN 62477-1:2012标准是对电力电子变换器设备和系统的安全通用标准,它涵盖了防电击、防能量、防火、防热伤害、防机械与噪音伤害以及产品在运行、存储与运输过程中可能产生的环境应力等方面的要求。该标准取代了EN 50178:1997标准。
进行逆变器CE认证流程包括以下几个步骤:提交认证申请表,提供产品名称、型号和参数等信息;工程师提供有效的CE认证指令和测试标准;在CE认证工程师指导下准备认证资料;进行产品测试,认证机构发送证书草稿确认;最后签发证书,接收电子版和原件。
如需逆变器检测认证咨询,ATS 全测检测提供全球一站式认证服务,欢迎在评论区留言。
低电压穿越标准(光伏、风电、储能)
低电压穿越(LVRT)功能是电力电子设备,如光伏并网逆变器、风力发电机组和储能变流器,必备的重要特性。这一功能确保在电网电压异常时,设备能持续运行,避免电网负担加重,提供必要的电能支持。本文将详细解析低电压穿越在光伏、风电、储能系统中的标准与要求。
光伏并网逆变器的低电压穿越标准(NB/T 32004-2013)规定,对于并入35 kV及以上电压等级电网的大型光伏电站,逆变器必须具备电网支撑能力,以避免在电网电压异常时脱离,防止电网电源波动。而对于并入10kV及以下电压等级电网的小型光伏系统,只需具备故障脱离功能即可。逆变器在交流侧电压跌至0时,能保证不间断并网运行0.15秒后电压恢复至标称电压的20%;在电压跌落持续0.625秒后,电压开始恢复,2秒内电压达到标称电压的90%时,逆变器能确保不间断并网。在故障清除后,逆变器有功功率应快速恢复,至少以10%额定功率/秒的功率变化率恢复至故障前值。同时,逆变器宜在低电压穿越过程中提供动态无功支撑。
风力发电机组的低电压穿越标准(GB/T 36995-2018)则关注了风电机组在不同电压状态下的运行要求。低电压穿越下,风电机组在并网点电压处于特定曲线范围时,必须不脱网连续运行。具体要求包括:有功功率的快速恢复,动态无功电流的注入以支撑电压恢复。在高电压穿越时,风电机组在电压升高和恢复正常时,有功功率波动应在一定范围内,且波动时间不超过80毫秒;电压升高期间,有功功率波动应保持在±5%额定功率范围内。动态无功电流应满足特定的响应时间和控制要求以支撑电压恢复。
储能变流器的低电压穿越标准(GB/T 34120-2017)规定了储能系统在电力系统故障时的运行策略。储能变流器在并网点电压全部位于特定电压轮廓线及以上的区域时,应保证不脱网连续运行;否则,允许其切出电网。具体要求包括储能变流器在电压跌至0时,能连续运行0.15秒;电压跌至特定阈值以下时,允许其切出电网。在故障清除后,储能变流器的有功功率应快速恢复,至少以30%额定功率/秒的功率变化率恢复至故障前的值。此外,储能变流器在电压跌落时应实时跟踪并网点电压变化,注入动态无功电流以支撑电网。
通过这些标准的实施,电力系统能更稳定、可靠地运行,确保在各种电网电压异常情况下,光伏、风电、储能系统仍能提供必要的电能支持,减少对电网的冲击,提高电力系统的整体安全性和效率。
什么是储能逆变器?
储能逆变器是一种能量存储与转换设备。
储能逆变器在电力系统中扮演着至关重要的角色。它主要的功能是进行能量的储存和逆变,即将直流电转换为交流电。以下是关于储能逆变器的
1. 储能功能:储能逆变器连接着电源和电网,能够存储多余的电能。在电力供应充足时,它会将多余的电能储存起来;当电力需求增大或电网供电不足时,它又能释放储存的电能,以维持电力系统的稳定。
2. 逆变作用:储能逆变器中的核心部件是逆变器,它的作用是将直流电转换为交流电。在电力系统中,电池或其他储能设备提供的通常是直流电,而家庭和企业的电器设备则需要使用交流电。逆变器通过一系列电路转换,使得直流电能够变为适合使用的交流电。
3. 智能化管理:现代的储能逆变器通常配备有先进的控制系统和传感器,能够实时监控电网状态、储存电量和电池状态等。通过这些智能化管理功能,可以实现能源的最优分配和使用,提高电力系统的效率和稳定性。
总的来说,储能逆变器是一个重要的电力设备,在保障电力系统的稳定运行、提高能源利用效率以及应对突发电力需求等方面发挥着关键作用。随着可再生能源和智能电网的快速发展,储能逆变器的应用前景将越来越广阔。
储能逆变器应该如何理解,三相储能逆变器又是什么意思?
储能逆变器是一种设备,它能将直流电转化为交流电,并能将电能储存于电池中。在电网电力波动和提高电力系统供电质量方面,储能逆变器起着至关重要的作用。它能控制电池与电网之间的输电功率,确保在电网短暂掉电时,负载能持续供电。这种设备拥有多种特点,如平衡电网功率波动、双向转换电能储存与输出、采用保护措施确保电池和储能逆变器的安全性与可靠性、智能地控制电池的充电与放电,以延长电池使用寿命。
储能逆变器的分类基于电池存储系统的应用,可分为住宅或商业ESS(独立于公用事业的太阳能供电家庭或企业)与公用事业规模ESS(高需求期间补充发电)。这类系统由双向功率转换器组成,包括多种架构和转换器拓扑结构以及功率半导体技术。在设计上,储能逆变器需采用有源功率开关,以支持双向功率转换,并能适应电池利用率的限制。英飞凌推出《多电平拓扑结构在高能效储能系统(ESS)中的优势》白皮书,深入探讨住宅太阳能和公用事业规模应用中的ESS适应性。
VSG(虚拟同步发电机)拓扑结构涉及直流电源、电力电子变流器和输出LC滤波器,通过在变流器控制系统中嵌入同步发电机方程,实现直流电源与系统间按照同步发电机的特性进行功率交换。VSG与同步发电机从系统角度来看,基本等效,但在实现上,VSG需要虚拟惯性和阻尼以维持稳定运行。VSG的研究问题可归纳为五个层面:底层控制、数学模型构建、控制算法、稳定性分析及在电力系统中的应用。底层控制涉及电压电流控制,常用的控制算法有基于dq坐标系的PI控制与基于abc坐标系的PR控制。数学模型反映了VSG的机械和电磁特性,控制算法确保设备稳定运行,实现储能与VSG、VSG与电网及VSG之间的协调运行。
英飞凌专家团队将在线分享储能新趋势,为您揭示储能系统的秘密。您将了解到英飞凌在能源生产、传输、功率转换等方面的优势,包括储能系统市场分析、户储高效单管解决方案以及大功率PCS模块解决方案。这场研讨会将为您提供全面的储能解决方案介绍。如果您对新能源未来充满期待,希望寻找最佳储能解决方案,这场研讨会不容错过。立即报名,与英飞凌共享这一洞见丰富的网络研讨会,共创零碳储能的未来。
了解更多英飞凌储能系统相关产品,请访问官方网站。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467