发布时间:2025-03-09 19:30:02 人气:
光伏并网逆变器
太阳能光伏发电系统主要有五种类型,分别是并网发电系统、离网发电系统、并离网储能系统、并网储能系统和微网系统。在应用场合上,它们各具特色,满足不同需求。
并网发电系统由组件、并网逆变器、光伏电表、负载、双向电表、并网柜和电网组成,适合分布式光伏发电系统,以“自发自用、余电上网”或“全额上网”的模式运行。
离网发电系统独立运行,适用于偏远地区、海岛、通讯基站和路灯等,由光伏组件、太阳能控制器、逆变器、蓄电池、负载等构成,适合无电网地区或停电频繁地区。
并离网储能系统结合了并网发电系统和离网发电系统的特点,适用于经常停电的场所,增加了充放电控制器和蓄电池,在电网停电时仍能供电,且可切换成离网工作模式。
光伏并网储能系统能够存储多余的发电量,提高自发自用比例,由光伏组件、太阳能控制器、蓄电池、并网逆变器、电流检测装置、负载等构成。
微网系统是一种新型配电网络,由分布式电源、负荷、储能系统和控制装置构成,能实现自我控制、保护和管理,既可以并网运行,也可以孤立运行,适用于多种能源互补,提高能源利用率。
这些系统满足了不同场景的能源需求,国家政策鼓励家庭光伏电站的免费并网,一度电补贴0.37元,补贴20年。投资方面,预计6-8年可回收成本,之后为纯收益。睿日光伏作为一家高新技术光伏企业,提供从设计、安装、并网到售后的一站式服务,其产品质量和技术创新均处于行业前列。
一文读懂:微型逆变器与组串式逆变器的区别
光伏并网逆变器是光伏系统的核心部件,主要功能是将光伏组件产生的直流电转换为适合电网要求的交流电。目前,分布式光伏领域常见的逆变器类型有微型逆变器和组串式逆变器。
微型逆变器对每块或多块光伏组件进行独立的最大功率点跟踪(MPPT),并对组件输出功率进行精细化调节及监控,通常功率在4kW以下。而组串式逆变器对一串或多串光伏组件进行单独的MPPT,功率范围则在1.5kW至500kW之间。
微型逆变器与组串式逆变器在产品拓补结构与电路设计上存在本质差异。微型逆变器采用单组件独立或并联输入设计,而组串式逆变器则采用多组件串联输入设计。这导致两者在运行电压、系统综合效率、运维方式及安装位置等方面存在显著不同。
在运行电压方面,微型逆变器系统中组件以并联方式连接,直流电压不超过120V;而组串式逆变器系统为串联电路,系统运行时电压累计可达600V至1000V。
就系统综合效率而言,微型逆变器每块组件都有独立的MPPT,实现对每块组件的独立追踪,精确追踪功率最大输出点,避免“短板效应”。相反,组串式逆变器的MPPT接入单个或多个“组串”,可能影响单块组件的发电情况,从而影响整串组件的发电效率。
运维方式上,微型逆变器实现组件级控制,运维时可查看每块组件的详细信息,如位置及发电情况。而组串式逆变器进行组串级控制,运维时只能看到整串组件的总体信息。
安装位置方面,微型逆变器模块化设计,体积小、重量轻,可直接安装在光伏支架上,实现即插即用,安装灵活。而组串式逆变器通常安装在某一串组件下方,采用固定或抱箍式安装。
综上所述,微型逆变器和组串式逆变器各有优势和适用场景。在选择逆变器时,应根据具体需求和环境条件,因地制宜选择合适的逆变器类型。组串式逆变器因其成熟可靠的技术和成本优势,在分布式光伏市场应用广泛。而微型逆变器在技术进步的推动下,其单瓦成本也在不断下降,未来将在更多场景中得到应用,以满足对光伏电站安全、效率及智能化运维的需求。
光伏并网逆变器与离网逆变器有什么区别?混合逆变器又有什么优势?
逆变器都是一样,就是和通常用电的变压器相反,DC-AC或者低压-高压。
用途不同,前面加个前缀而已。
混合就是同时支持并网和离网两种模式,也就是自用和卖电可以自动进行,对家庭来说可以省一点是一点
三相四线表光伏发电并网接线怎么接?
三相四线表光伏发电并网接线怎么接?
光伏并网电表安装接线示意图
光伏电站的并网方式可以分为两种,一种是单相并网运行,一种是三相并网运行。光伏的两种并网方式主要与光伏电站的逆变器相关,因为逆变器的分类根据其功率的大小,可以分为单相逆变器(小于等于8Kw)和三相逆变器(大于8Kw)。
对于逆变器容量在8KW以上的光伏电站来说,逆变器的输出是三相电,此时要进行并网,需要安装三相双向电表。对于“自发自用,余电上网”的用户来说,首先要向当地电力局申请并网,申请通过后,会获得供电局免费提供的双向电表,如果您的电站规模在8kW以上,电表一般为三相电表,那么三相电表该如何连接呢?自发自用,余电上网模式
这种模式就是自家安装的家用光伏电站所发电量,一部分用于自家电器的用电消耗,剩余部分卖给国家电网。家用光伏电站发的所有电量,都可以享受国家0.42元/度的补贴,卖电给国家电网的部分电量按照当地脱硫电价回收(分阶梯收费)。三相电表三相电表的接线端子示意图
三相电表的1,4,7端子是A,B,C三相进线,3,6,9是A,B,C三相出线。10号端子接零线N.
三相电表光伏并网电表安装接线示意图
在并网之前,我们首先要知道,三相电的颜色:A相(第一相)为**,B相(第二相)为绿色,C相(第三相)为红色。目前主要有以下几种叫法:A,B,C相或者L1,L2,L3相或者U,V,W相,顺序都是一样的,并网示意图如下图所示。
示意图1:三相双向电表+单向电表
示意图2:三相双向电表+三相单向电表+单向电表
示意图3:三相双向电表+三相单向电表
上面几种示意图,在理论上都是一样的,大家可以根据自己所拥有的电表数量来选择接线。
用户除了根据上图安装外,还要额外考虑安装空气开关以及漏电保护装置,这样才能保证家庭用电的安全。另外,需要大家注意的是,在安装电表前,需要有专业电工操作基础的人员配合安装,避免在安装过程中出现不必要的因为操作原因造成的触电事故。
光伏发电并网系统的构成
离网型光伏发电系统组成:
典型的光伏发电系统主要由光伏阵列、充放电控制器、储能装备或逆变器、负载等组成。其构成如图所示。
光照射到光伏阵列上,光能转变成电能,光伏阵列的输出电流由于受环境影响,因此是不稳定的,需要经过DC-DC转换器将其转变成稳定的电流后,才能加载到蓄电池上,对蓄电池充电,蓄电池再对负载供电。如果是并网售电,则不需要蓄电池,而是通过并网逆变器,将直流电流转换成交流电流,并到电网上进行出售。也就是说,离网型光伏发电系统必须使用到蓄电池储能,而并网型则不一定需要。
控制系统对光伏阵列的输出电压和电流进行实时采样,判断光伏发电系统是否工作在最大功率点上,然后根据跟踪算法,改变PWM信号的占空比,进而控制光伏阵列的输出电压使其工作点向最大功率点逼近。在蓄电池过充过放控制模块中,当蓄电池电压充电或放电到一定的设定值后,就会自动关闭或打开。
光伏阵列组件
光伏发电系统利用以光电效应原理制成的光伏阵列组件将太阳能直接转换为电能。光伏电池单体是用于光电转换的最小单元,一个单体产生的电压大约为0.45V,工作电流约为20~25mA/cm2,将光伏电池单体进行串、并联封装后,就成了光伏电池阵列组件。
当受到光线照射的太阳能电池接上负载时,光生电流流经负载,并在负载两端建立起端电压,这时太阳能电池的工作情况可以用下图所示的太阳能电池负载特性曲线来表示。它表明在确定的日照强度和温度下,光伏电池的输出电压和输出电流以及输出功率之间的关系,简称I-V特性和P-V特性。从图中可以看出,光伏发电系统的特性曲线具有强烈的非线性,既非恒压源也非恒流源。从其P-V特性曲线可以看出,在日照强度一定的前提下,其输出功率近似于一个开口向下的抛物线。该抛物线顶点对应的功率即为该日照强度下的P-V曲线的最大功率点,对应的电压称为最大功率点电压。为了提高光伏发电系统的转化效率,就必须使系统保持运行在P-V曲线最大功率点附近。
光伏电池阵列的几个重要技术参数:
1)短路电流(Isc):在给定日照强度和温度下的最大输出电流。
2)开路电压(Voc):在给定日照强度和温度下的最大输出电压。
3)最大功率点电流(Im):在给定日照强度和温度下相应于最大功率点的电流。
4)最大功率点电压(Um):在给定日照和温度下相应于最大功率点的电压。
5)最大功率点功率(Pm):在给定日照和温度下太阳能电池阵列可能输出的最大功率。
DC-DC转换器
光伏电池板发出的电能是随着天气、温度、负载等变化而不断变化的直流电能,其发出的电能的质量和性能很差,很难直接供给负载使用。需要使用电力电子器件构成的转换器,也就是DC-DC转换器,将该电能进行适当的控制和变换,变成适合负载使用的电能供给负载或者电网。电力电子转换器的基本作用是把一个固定的电能转换成另一种形式的电能进行输出,从而满足不同负载的要求。它是光伏发电系统的关键组成成分,一般具备有几种功能:最大功率点追踪、蓄电池充电、PID自动控制、直流电的升压或降压以及逆变。
DC-DC转换器输出电压和输入电压的关系通过控制开关的通断时间来实现的,这个控制信号可以由PWM信号来完成。主要工作原理是保持通断周期(T)不变,调节开关的导通持续时间来控制电压。D为PWM信号的占空比。
根据输入和输出的不同形式,可将电力电子转换器分为四类,即AC-DC转换器、DC-AC转换器、DC-DC转换器和AC-AC转换器。在离网型光伏发电系统中采用的是DC-DC转换器。
DC-DC转换器,其工作原理是通过调节控制开关,将一种持续的直流电压转换成另一种(固定或可调)的直流电压,其中二极管起续流的作用,LC电路用来滤波。DC-DC转换电路可以分为很多种,从工作方式的角度来看,可以分为:升压式、降压式、升降压式和库克式等。
降压式转换器(BuckConverter)是一种输出电压等于或小于输入电压的单管非隔离直流转换器;升降压式变换器(Buck-BoostConverter)转换电路的主要架构由PWM控制器与一个变压器或两个独立电感组合而成,可产生稳定的输出电压。当输入电压高于目标电压时,转换电路进行降压;当输入电压下降至低于目标电压时,系统可以调整工作周期,使转换电路进行升压动作;而升压式转换器(BoostConverter)是输出电压高于输入电压的单管不隔离直流转换器,所用的电力电子器件及元件和Buck转换器相同,两者的区别仅仅是电路拓扑结构不同。
蓄电池
在独立运行的光伏发电系统中,储能装置是必不可少的。现在可选的储能方法有很多,如电容器储能、飞轮储能、超导储能等,但是从方便、可靠、价格等综合因素来考虑,大多数大中型的光伏发电系统都使用了免维护式的铅酸蓄电池作为系统的储能装置。
但选用铅酸蓄电池也有不足之处,它比较昂贵,初期投资能够占到整个发电系统的1/4到1/2,而蓄电池又是整个系统中较薄弱的环节,因此如果管理不当,会使蓄电池提前失效,增加整个系统的运营成本。
光伏控制模块
光伏控制模块以单片机为控制中心,为蓄电池提供最佳的充电电流和电压,快速、平稳、高效地为蓄电池充电。并在它充电过程中减少蓄电池的损耗,尽量延长蓄电池的使用寿命,同时保护蓄电池免受过充电和过放电的危害。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于受天气等外界因素的影响,太阳电池阵列发出的直流电的电压和电流不是很稳定),同时也通过控制传感器电路(光控、声控等)来实现全自动开关灯功能。
单片机的主要工作是将电流采集电路和电压采集电路采集到的电流、电压进行运算比较,然后通过MPPT算法来调节PWM的占空比D,使光伏阵列组件工作在最大功率点处。
离网型逆变器
住宅用的离网型光伏发电系统因为部分负载是交流负载,因此还需要离网型逆变器,把光伏组件发出的直流电变成交流电给交流负载使用。光伏离网型逆变器与光伏并网型逆变器在主电路结构上没有较大区别,主要区别在光伏并网型逆变器需要考虑并网后与电网的运行安全。也就是同频;同相;抗孤岛等控制特殊情况的能力。而光伏离网型逆变器就不需要考虑这些因数。
为了提高离网型光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。
离网型光伏发电系统的应用:
离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467