发布时间:2025-03-04 23:30:13 人气:
PLECS RT Box 应用示例 11 (99):单相逆变器(Single-Phase Inverter)
此演示模型专注于单相并网逆变器在50千瓦和单位功率因数下的运行,利用PLECS电气和控制域的功率级和控制实现。电厂与控制器模型被分为两个不同的子系统,分别部署在两个RT Box上,通过虚拟原型配置的37针Sub-D电缆进行连接,交换数字PWM信号和模拟电流测量值。对于硬件在环(HIL)或快速控制原型(RCP)应用程序的实时模型开发,此配置提供了一个潜在的起点。
离散化步长和平均执行时间的参数为每个子系统提供关键信息,以确保实时执行。RT Box上的实时执行要求模型使用固定步长解算器执行,参数指定生成代码的基本采样时间,并用于离散化物理模型和控制域状态空间方程。执行时间表示在RT Box硬件上执行PLECS模型的一个离散步骤所需的实际时间。处理器负载是执行时间与离散化步长的比率。
表1展示离散化步长和平均执行时间的详细数据,为构建高效实时模型提供指导。此模型针对两个RT Boxes应用程序,一个运行Plant模型,另一个运行Controller模型,以最小化每个实时目标的执行时间。若用户仅拥有一个RT Box,可参考针对一个RT Box应用程序的相应型号进行配置。
在电源电路中,直流电压源为Vdc=750 V,H桥由两个IGBT半桥电源模块组成,通过PWM捕获块生成开关信号。滤波电感和断路器连接到电网,实现与理想交流电压源(Vrms=220V,f=50Hz)的连接。直流电压、电网电压和电网电流通过模拟输出组件输出,比例因子和偏移配置将模拟输出电压限制在[-4 V,+4 V]范围内。
闭环控制器用于调节线路电流与电网电压的同步,包含基于正交信号发生器的锁相环(PLL)以检测电网的电角度和频率。PLL相位角输出转换为电网电流的参考信号,比例积分(PI)或比例谐振(PR)调节器在“Controller”子系统内部切换。调节器参数Kp和Ki使用最佳幅值规则设置,谐振频率选择等于电网频率,确保系统响应的优化。
在实时操作模式下,模型既可以在计算机上以离线模式运行,也可以在PLECS RT Box上以实时模式运行。实时操作过程中,可使用PLECS示波器“电子Elec”观察控制器箱上的测量值和中间信号,如电网相位角、PLL检测到的角频率以及测量的电网电压和电流。参考电流与测量电流的比较显示了使用PR调节器时测量电流滞后稍小的特性。电网电流的参考振幅可以通过调整控制器子系统中的增益块“Ip”进行改变,通过将“断路器Breaker”常数设置回0断开逆变器与电网的连接。
此模型展示了单相并网逆变器模型的实用性,适用于离线模拟和实时操作,支持硬件在环测试和快速控制原型设计。
heric拓扑的优势,为什么单项光伏逆变器通常选用heric拓扑?
非隔离型单相并网逆变器在小功率光伏发电系统中广泛应用,因其体积小、效率高等特点。然而,在并网系统中,由于缺少变压器,光伏电池板与电网间存在多处分布电容,功率器件在高频开关时会导致共模电流的产生。为了保障人员和设备安全,必须对地漏电流进行有效抑制。针对此问题,常见的优化策略有两种:一是采用H桥拓扑并结合双极性PWM调制,可以有效抑制共模电流,但存在开关损耗较大及输出电压幅值跳变的问题;二是提出H5、H6等改进型拓扑,分别在效率与共模电流抑制之间寻求平衡,但它们在成本或效率上存在局限。Heribert Schmidt等学者提出了一种新颖的拓扑结构,即Heric拓扑,仅需增加两个功率器件,即可实现输出共模电压的相对稳定,同时提高整体效率,从而被广泛应用在单相并网逆变器中。
Heric电路通过增加T5/D5与T6/D6两个功率器件,滤波电感在续流过程中提供了双向电流通路,从而控制输出共模电压相对稳定。这种拓扑结构下,功率因数为1时,T5与T6在工频下进行开关操作,正半周期T1与T4进行高频开关,关断时通过T6与D5进行续流,负半周期则同理。T2、T3与T5、D6进行换流,保证逆变器AC端口的共模电压输出相对稳定,基本维持在VDC/2。
在Heric电路需要向电网注入无功电流时,T5、T6则需要在输出电压电流反向区间内分别进行高频开关,以适应输出滞后无功电流的情形。例如,当输出电压V大于0而电流I小于0(规定电流流出H桥为正)时,T1-T4均关断,T5导通,电感电流通过T5与D6进行续流,T5关断时电感电流通过D1与D4流通。同样地,当输出电压V小于0而电流I大于0时,T6、D5与D2、D3进行换流。
在单相户用光伏逆变器的应用中,追求小体积和低噪音是产品设计的关键目标之一,这不仅降低了设备的安装要求,也为用户在运行期间提供了更加宁静的环境。因此,较高的开关频率是功率半导体器件的重要需求之一,而更高的效率和更好的可靠性则是产品设计中不可或缺的特性,有助于为客户提供长期稳定的经济效益。在单相光伏应用中,电网电压通常为220/230VAC,逆变器的母线电压在350-400VDC左右,因此,适合应用高效高速的650V IGBT,以满足这些场景中的需求。
英飞凌新一代650V TRENCHSTOP™ IGBT7 H7产品采用最新的微沟槽栅技术,相比前代产品整体损耗可减少39%,同时配备新一代全电流的发射极控制EC7续流二极管,具有更好的EMI表现。此外,该器件还具备出色的防潮性能,可在恶劣环境中可靠运行,且已通过JEDEC 47/20/22的相关测试,特别是HV-H3TRB测试,符合工业应用标准,非常适合户外应用的户用单相光储逆变器。
对于5kW、8kW至10kW功率等级的Heric单相光伏逆变器,可选用相应的IKWH40N65EH7和IKWH75N65EH7产品,DC-AC级转换效率均可达到98.5%,而T5/T6、D5/D6的损耗较小。在成本优化方面,根据具体需求考虑选择合适大小的器件。此外,英飞凌还提供了一站式的解决方案,包括驱动IC(如EiceDRIVER™ X3 Compact、2EDi family双通道隔离驱动系列)、微控制器产品(如XMC™、PSoC™系列)、以及用于测量和控制的XENSIV™系列电流传感器和AIROC™系列蓝牙wifi产品,以满足不同应用需求。
华为逆变器有哪些型号
华为智能光伏逆变器在市场上有多种型号,以满足不同用户的需求。单相并网机型包括3KW、4KW和5KW等型号,这些型号适用于家庭或小型商业项目。三相并网机型则更为强大,包括8KW、12KW、17KW、33KW、36KW、50KW、60KW和70KW等多种选择。这些型号适合大型商业项目或社区太阳能发电系统。用户可根据实际需求选择合适的机型。
单相并网逆变器的设计旨在简化安装和使用过程,同时确保稳定可靠地输出电力。而三相并网逆变器则拥有更高的功率输出,适用于需要大量电力供应的场景。无论是家庭住宅还是商业建筑,华为智能光伏逆变器都能提供高效、可靠的电力解决方案。
华为智能光伏逆变器拥有先进的技术,确保了卓越的性能和可靠性。这些逆变器采用了高效能的IGBT模块,能够有效提高能源转换效率,降低损耗。此外,华为逆变器还具备智能控制功能,可根据电网和负载情况自动调整输出功率,从而实现最佳的能源利用。
华为智能光伏逆变器还具备出色的抗干扰能力,可以在恶劣的环境条件下稳定运行。无论是高温、低温还是潮湿环境,华为逆变器都能保持稳定的工作状态,确保电力供应的连续性和可靠性。此外,华为逆变器还具有智能化的故障诊断和保护功能,能够快速检测并处理潜在的问题,确保系统安全稳定运行。
如果您对华为智能光伏逆变器感兴趣,或者需要了解更多信息,可以联系华为金牌经销商深圳恒通源。他们将为您提供详细的咨询和支持服务,帮助您选择最适合的机型,并解答您可能遇到的各种问题。
光伏并网逆变器功能作用
光伏并网逆变器的核心功能是将直流电(dc)转换为交流电(ac),以优化输入电压并提高效率。其工作原理是通过左侧电桥,通常采用18至20千赫兹的高频开关频率,对dc电压进行转换,这种操作过程被称为dc/ac转换。单相h桥是最常见的配置,但也可以选择三相或其他设计,以适应不同应用场景的需求。
在完成电压调节后,逆变器通过低通滤波器,进一步处理和净化输出的电压,以产生符合并网光伏发电系统要求的正弦交流电。这种电能可以直接并入电网,为家庭或商业用电提供清洁、高效的电力来源。
总的来说,光伏并网逆变器扮演着至关重要的角色,它不仅实现了直流电与交流电的转换,还确保了并网电力的质量和稳定性,为可再生能源的广泛应用提供了关键支持。
扩展资料
我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市场。
单相小功率逆变器拓扑
逆变器技术在光伏并网系统中的应用日益广泛,尤其在低压电网指令和无功调节方面面临挑战。常见拓扑结构在抑制漏电流和共模电流方面存在局限性,因此高效抑制漏电流的拓扑架构和共模电流抑制成为关键。本文将详细介绍逆变器拓扑在这些问题上的解决方案和改进。
传统小功率逆变器主要使用H4单相全桥拓扑,但由于存在漏电流问题,需要通过改变调制策略或增加RC吸收电路、输出隔离变压器等方式解决,这些措施会导致效率下降、体积增大和成本增加。德国SMA公司推出的H5结构从根本上解决了漏电流问题,随后出现了一系列解决漏电流的拓扑,如H6、双Buck拓扑等,这些拓扑在提高效率方面表现出色。
抑制共模电流是提升逆变器性能的关键之一。共模电流影响系统安全,降低效率,并引入谐波。逆变器中寄生电容的存在导致共模电压变化,进而产生共模电流。抑制共模电流的方法主要是降低共模电压的频率或维持共模电压不变。在实际应用中,选择合适的拓扑结构对于抑制共模电流至关重要。
H4和H6拓扑在抑制共模电流方面的性能分析表明,H6拓扑相对H4拓扑在共模电流抑制上具有优势。H6逆变拓扑采用单极性SPWM调制,产生高频SPWM输出波形,通过LC滤波器连接市电。控制环路通过采样BUS电压、市电电压和电感电流,实现输出电流与市电电压相位的同步,同时满足各法规对输出电流的要求。在工作原理中,H6逆变桥采用6个开关管驱动波形,实现高频和低频开关管的优化配置,以减少损耗和提高效率。
在H6拓扑中,开关管的选取考虑了开关频率和电流峰值等因素,以确保在稳定工作条件下,高频开关管开关动作时的△Vds范围较小,从而减少开关损耗。此外,通过合理配置二极管、滤波电感和滤波电容,实现逆变器的高效运行和良好的电流输出波形。
为了进一步优化逆变器的性能,设计了差分采样电路和抬升电路,以满足DSP28335的ADC输入电压范围需求。逆变器的输出滤波器采用LC或LCL结构,选择合适的滤波器结构以满足不同应用场合的需求,从而实现对高频谐波的有效衰减。
最后,通过双极性和单极性SPWM控制方式的比较,双极性SPWM虽然在损耗和电感电流纹波方面相对较高,但不存在共模漏电流问题,且不容易产生过零点畸变。因此,在设计逆变器控制策略时,需要综合考虑效率、损耗和系统稳定性等因素。
综上所述,高效抑制漏电流的拓扑架构和共模电流抑制策略是小功率逆变器面临的技术难题。通过采用先进的拓扑结构、优化控制策略和合理配置电路组件,可以显著提升逆变器的性能和可靠性,满足低压电网指令和无功调节的需求。
逆变器如何并网
逆变器并网需要经过一系列步骤,包括确定并网方式、参数设置、设备连接和调试等。
逆变器并网的过程主要包括以下几个方面:
1. 确定并网方式
并网方式一般分为单相并网和三相并网。在选择并网方式时,需要考虑用电现场的实际情况、电源和电网的电压等级以及用电负荷等因素。
2. 参数设置
根据电网的要求,对逆变器的输出参数进行设置,如电压、频率、功率因数等,确保逆变器输出的电能质量符合电网标准。同时,还需对保护参数进行设置,如过流、过压、欠压、短路等保护措施,保证系统的稳定运行。
3. 设备连接
完成逆变器与电网的连接。包括交流电缆的接线、并网开关的闭合等。在接线过程中,应严格按照电气安全规范操作,确保接线的正确性和安全性。
4. 调试
完成设备连接后,进行系统的调试。检查逆变器的输出电能质量是否符合要求,观察系统的运行状况,确保逆变器与电网之间的协调运行。
具体解释如下:
逆变器并网最关键的是要确保与电网的协调运行。并网过程中需要注意电气安全,防止短路和过流等情况的发生。此外,根据电网的要求和现场情况选择合适的并网方式也是非常重要的。参数设置是并网过程中必不可少的一环,正确的参数设置可以确保系统的稳定运行和电能质量。设备连接时,应注意接线的正确性和安全性。最后,完成连接后进行系统的调试,以确保逆变器与电网之间的正常协调运行。在逆变器并网过程中,还需考虑如雷电保护、接地保护等安全措施,确保人身和设备安全。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467