发布时间:2025-02-27 01:00:59 人气:
变频器spwn的调制原理
PWM是一种通过改变输出方波的占空比来改变等效输出电压的技术,广泛应用于电动机调速和阀门控制等领域,如电动车电机调速。SPWM(Sinusoidal Pulse Width Modulation)则是在PWM基础上改进了脉冲宽度调制方式,脉冲宽度按正弦规律排列,输出波形经滤波后可得到正弦波输出。SPWM技术在直流交流逆变器等设备中应用广泛,如高级UPS系统。
三相SPWM用于模拟市电的三相输出,在变频器领域中得到广泛应用。实现SPWM的方法主要有以下几种:
1.1 等面积法:该方法直接使用等幅不等宽的矩形脉冲序列代替正弦波,计算各脉冲的宽度和间隔,通过微机存储这些数据,利用查表方式生成PWM信号,控制开关器件的通断。此方法虽能准确计算出开关器件的通断时刻,所得波形接近正弦波,但计算繁琐,数据占用内存大,不能实时控制。
1.2 硬件调制法:此方法为解决等面积法计算繁琐的问题而提出,原理是将正弦波作为调制信号,等腰三角波作为载波,通过调制获得期望的SPWM波形。这种方法简单,可使用模拟电路构成三角波载波和正弦调制波发生电路,用比较器确定交点时刻,控制开关器件通断,但模拟电路结构复杂,难以实现精确控制。
1.3 软件生成法:随着微机技术的发展,软件生成SPWM波形变得容易。软件生成法包括自然采样法和规则采样法。自然采样法以正弦波为调制波,等腰三角波为载波进行比较,所得SPWM波形接近正弦波,但计算繁琐,难以实时控制。规则采样法则采用三角波对正弦波进行采样,以阶梯波与三角波交点时刻控制开关器件通断,分为对称和非对称规则采样,计算简单,便于实时运算,但直流电压利用率较低,线性控制范围较小。
1.4 低次谐波消去法:此方法旨在消除PWM波形中某些主要的低次谐波,通过傅氏级数展开表示输出电压波形,确定基波分量值,令两个不同的an=0,建立方程求解,消除指定频率的谐波。虽然能很好地消除指定低次谐波,但剩余较低次谐波幅值可能较大,计算复杂,同样只适用于同步调制方式。
1.5 梯形波与三角波比较法:为提高直流电压利用率,提出一种新方法,采用梯形波作为调制信号,三角波为载波,两波幅值相等,以交点时刻控制开关器件通断,有效提高直流电压利用率,但输出波形含有低次谐波。
为什么逆变器要用spwm技术?
逆变器为何采用SPWM技术,关键在于其能显著提升输出正弦波的纯净度和效率。普通PWM技术通过固定幅值的调制波与三角载波相交,产生方波输出,虽能改变输出频率,但因高次谐波丰富,正弦波质量受限。SPWM技术则利用正弦规律变化的占空比,通过ADC将模拟正弦信号截取三角波载波,生成SPWM信号。DAC驱动逆变器,结合滤波,最终产出低谐波、高纯净度的正弦波。
SPWM技术的两个核心元素是占空比和频率。占空比随正弦波幅度变化,频率则与三角载波同步。这种技术利用计算机和单片机的计算能力实现占空比和频率的精准调整,有效避免了谐波的产生。通过SPWM驱动逆变器,原始信号经过斩波、逆变处理,最终转化为高频大功率的正弦交流电。该技术在电机控制、电能变换及并网等领域应用广泛,特别适合对谐波要求严格的场合,如电能质量领域,能够显著提高效率和稳定性。
在电力电子应用中,SPWM技术能显著减少谐波,提高输出正弦波的纯净度,尤其在电机驱动、逆变器设计中得到广泛应用。同时,矢量PWM(SVPWM)技术引入相位信息,用于驱动三相正弦交流电,进一步优化了逆变器的性能和输出质量。
SPWM技术的实践操作涉及到硬件和软件两部分。硬件方面,通过比较三角波与正弦波来生成SPWM信号;软件方面,利用单片机输出PWM波,并通过定时器或Epwm模块生成三角波,进而产生SPWM信号。在实际应用中,SPWM的生成与操作步骤通常包含生成载波、生成正弦波并进行比较等关键步骤。
总体而言,SPWM技术通过优化逆变器输出的正弦波质量,显著提升了其在电机控制、电能变换及电力并网等领域的性能和效率,是现代电力电子技术中不可或缺的核心技术之一。
PWM逆变器是什么?
1. PWM逆变器在电机驱动中扮演着关键角色,它通过调节脉冲宽度来控制电机速度和扭矩。然而,这一过程中可能会产生共模电压,它通过电机内部的寄生电容引起漏电流。
2. 漏电流如果过大,不仅可能触发电机保护电路的误动作,还会产生电磁干扰(EMI),干扰电网中其他设备的正常运行。同时,过大的轴电压和轴承电流会加速电机轴承的磨损,降低系统的可靠性。
3. 为了抑制共模电压,传统的做法包括转轴接地、轴承绝缘和使用导电润滑剂等。尽管这些方法能够在一定程度上降低轴电流,保护电机轴承,但共模电压本身并未被彻底消除。
4. 在电机负载运行时,共模电压依然存在,并通过负载轴承产生破坏性电流。因此,滤波器被引入以减少逆变器输出中的谐波成分。尽管无源滤波器在降低过电压影响方面效果显著,但它们对于变化着的载波频率响应有限。
5. 近年来,有源滤波器作为一种消除共模电压的新型解决方案被提出。例如,Alexander Julian提出的四相逆变器和Annette Jouanne提出双桥逆变器(DBI)等方法,尽管能够减少共模电压,但它们自身也存在如增加开关损耗和谐波失真、需要额外的驱动设备和特定定子绕组配置等限制。
6. 文中提出的有源滤波器结构简单,易于控制,通过产生与PWM逆变器输出电压幅值相等、相位相反的共模电压,有效消除了感应电机端的共模电压问题。仿真和实验结果证明了这种结构的有效性,为提高PWM逆变器系统的可靠性和性能提供了新的途径。
如何增加spwm逆变器的输出电压基波频率
为了提高SPWM逆变器的输出电压基波频率,可以采取以下措施:
1. 增加正弦调制波的频率。
2. SPWM技术是在PWM技术基础上发展起来的,它通过将期望的正弦电压波形分割成一系列等宽不等幅的片段,并用等幅不等宽的脉冲宽度调制(PWM)脉冲序列来代替,从而在滤波器输出端得到近似正弦波形的电压。
3. 理论和实践都表明,SPWM调制产生的脉冲电压包含了与理想正弦电压相对应的基波分量。通过提高SPWM调制频率,可以使得最低次谐波的频率接近SPWM的开关频率(即每个基波周期内的脉冲数)。
4. 当开关频率足够高时,可以使用较小的滤波器滤除大部分谐波,从而实现更高的输出电压基波频率。
5. 通过调整SPWM脉冲宽度,可以实现输出电压基波幅值的精确控制。
6. 采用SPWM技术的逆变器,即全桥型SPWM逆变器,在波形质量和控制性能上相较于方波逆变器有显著提升。
通过这些方法,可以在不改变原意的前提下,提高SPWM逆变器的输出电压基波频率,同时保持输出的波形质量和控制性能。
逆变器滤波器设计(变频器输出滤波)
LC滤波器,一种由串联电抗L和并联电容C构成的正弦波滤波器,常在电流源逆变器中应用。若电网较强,LC滤波器可能会为电网注入开关次谐波,但若电网较弱,系统阻抗较大时,LC滤波器的使用仍无问题。然而,LC滤波器存在两个谐振点,若控制参数设计不当,可能导致谐振现象。为解决此问题,通常在电容C上串接一个电阻。若不串接电阻,需要检测电容电流,并使用虚拟阻抗的方法实现反馈。
相比之下,电压源逆变器通常不与电网连接,而直接向负载供电,如UPS。在此场景下,电压纹波系数应小于一定值,以确保负载能承受,因此使用LC滤波器即可。然而,电压源逆变器使用LCL滤波器也是可行的。
在变频器的应用中,输出PWM电压波形、IGBT特性和电缆长度等因素,可能对电动机绝缘造成损伤。正弦波滤波器的引入,能有效解决这一问题,通过将PWM电压波形转换为正弦波,减少过冲电压,从而保护电动机绝缘。本文详细阐述了正弦波滤波器的工作原理,并提供了应用案例。变频器在现代工业生产中,因其出色的调速性能、节能降损和提高生产率与产品质量,已经成为不可或缺的设备。
变频器在运行过程中,输出的PWM电压波形和电缆长度等因素可能导致电动机绝缘损伤。具体表现为电动机绝缘的频繁击穿和损害电动机轴承。这主要是由于变频器输出的电压波形在电动机端产生过高的电压。正弦波滤波器通过将PWM波形转换为正弦波,消除过冲电压,进而避免对电动机绝缘的损伤。本文分析了损伤电动机绝缘的原因,并提供了有效的解决方案,强调了正弦波滤波器在保护电动机绝缘中的重要作用。
正弦波滤波器的设计基于LC滤波器原理,由串联电抗L和并联电容C构成。其工作原理是通过控制滤波器的截止频率f,实现对PWM波形中谐波的滤除,使输出电压近似为正弦波。通过仿真波形,可以直观地观察到滤波器的效果。在设计正弦波滤波器参数时,需要精确匹配电抗和电容值,以满足滤波要求并降低成本。以额定功率315kW、功率因数0.8的电动机为例,设计时需要考虑电流余量、压降以及电容值与变频器载波频率的关系,以确保滤波器的正常工作和电动机的稳定运行。
PWM波形的PWM波形
变频器的电路通常由四个主要部分组成:整流、中间直流环节、逆变和控制。整流部分采用三相桥式不可控整流器,逆变部分则是由IGBT构成的三相桥式逆变器,其输出为PWM波形。中间直流环节包括滤波、直流储能和缓冲无功功率。
PWM波形究竟是什么呢?PWM是脉冲宽度调制的缩写,指的是一种占空比可变的脉冲波形。PWM控制技术基于上述原理,通过对半导体开关器件的通断进行精确控制,使得输出端获得一系列幅值相等但宽度不同的脉冲。这些脉冲能够替代正弦波或其他所需的波形。通过按照特定规则对脉冲宽度进行调制,不仅可以改变逆变电路输出的电压大小,还能调整输出频率。
在电流跟踪型PWM变流电路中,采用电流跟踪控制方法。这种方法不是使用信号波对载波进行调制,而是将电源输出的电流作为指令信号,将实际电流作为反馈信号。通过比较二者的瞬时值,来决定逆变电路中各功率器件的通断,确保实际输出电流能够追踪指令信号的变化。
怎么让spwm逆变器输出基波频率变大
若要增大SPWM逆变器的输出电压基波频率,可采用的控制方法是:增大正弦调制波频率 。
SPWM是在PWM的基础上,将期望输出的正弦电压波形假想成有一组等宽不等幅的片断组合而成,然后用一组冲量对应相等的等幅不等宽(即脉冲宽度调制)脉冲将它们依次代替,从而在滤波器输出端得到期望的正弦电压波形。这样的脉冲可以由电子开关的通断控制实现。
理论推导和实际的频谱分析表明:SPWM脉冲电压具有与理想正弦电压相一致的基波分量,而且最低次谐波的频率可以提高到SPWM调制频率(即开关频率,对应于每基波周期的脉冲个数)附近。因此,当开关频率足够高时,利用较小的滤波器就能将其中的谐波滤除掉。
此外,只需改变SPWM脉冲宽度,就可以平滑地调节输出电压的基波幅值。采用了SPWM技术的逆变器即为SPWM逆变器,它在波形质量和控制性能上相对方波型逆变器有了巨大的进步。
扩展资料:
原理
一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代,只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
百度百科-SPWM
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467