Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

三相pwm逆变器

发布时间:2025-02-14 09:10:21 人气:



三相桥式pwm逆变电路

1. 逆变器输出电压波动的原因通常不在于逆变器本身,因为逆变器通常配备有稳压电路来确保输出电压的稳定性。

2. 输出电压的不稳定通常是由输入电瓶电压的波动引起的,当输入电压波动较大时,输出电压可能会有所不稳定。

3. 逆变电路根据其直流侧储能元件的不同类型,可以分为电压型逆变电路和电流型逆变电路两种。

有关电流滞环跟踪pwm控制的三相逆变器的原理是?

1. 在三相逆变器中,输出电流被检测并与其预设的参考电流进行比较。

2. 当实际反馈电流低于参考电流的一个阈值时,下桥臂的IGBT被关闭,而上桥臂的IGBT则被打开,从而增加输出电压,以提升输出电流。

3. 反之,若反馈电流超出参考电流的阈值,上桥臂的IGBT将被关闭,下桥臂的IGBT则被激活。

4. 由此,输出电流将在参考电流附近循环振荡,实现滞环跟踪控制。

5. 该方法的优点在于能够生成质量极高的电流波形,使其接近于预设的参考电流。

6. 然而,其缺点在于IGBT的开关频率是不固定的,它取决于参考电流变化的速度以及开关操作的区间大小。

PLECS 应用示例(78):三相电压源逆变器(Three-Phase Voltage Source Inverter)

三相电压源逆变器(VSI)模型展示了一个从直流电压源产生交流电流和电压的逆变器电路。此模型设计用于实现10千瓦的额定功率,并提出了三种不同的脉宽调制(PWM)方案来控制VSI输出。

直流电压源提供700伏的电压,代表系统中的电池、太阳能阵列或整流器。逆变器连接到230Vrms、50Hz的低压电网,电网表示为刚性交流电压源。并网电抗为基础阻抗的10%,并包含小电阻来模拟电感器损耗。电感器电流被初始化为单位功率因数下10kW的期望额定功率,以避免启动期间的瞬态。

可配置子系统“控制器Controller”包含三种常见的PWM方法:正弦PWM、空间矢量(SV)PWM和滞后PWM。选择不同的调制器类型将呈现不同的控制参数。通常,VSI输出端电压或参考电流将使用闭环控制方法动态计算,但在模型中使用固定值。正弦和SV PWM配置中,参考信号是VSI输出端子处的期望平均电压,VSI输出电流与电网电压相位差决定了输出电压幅度和角度。正弦PWM实现使用对称PWM组件,其采样参数配置对调制指数输入进行采样的不同方式。滞后PWM是一种电流控制的PWM方案,调节逆变器的输出电流至恒定迟滞带内的参考电流。

模型配置了运行多个实验,比较每个调制器的性能。通过检查输出波形、总谐波失真(THD)、谐波频谱分析和磁滞带,可以比较每种调制策略产生的谐波。

通过比较,发现SV PWM在输出端产生的谐波失真较小,与相同开关频率的正弦PWM相比。正弦PWM和SV PWM方案的主谐波以开关频率的整数倍为中心,而磁滞PWM产生的谐波是非周期性的,并在谐波频谱中具有频率含量。

模型讨论了无调节三相VSI的运行,并实现了三种调制技术,比较了每种调制策略产生的谐波。此模型授权英富美(深圳)科技有限公司提供翻译与发表,所有权属于瑞士商Plexim GmbH所有。如有任何用途,请先获得所有权人允许。

三相pwm逆变器的基本原理

1. 三相PWM整流器的工作原理主要涉及电流的转换过程。

2. 这种电路的核心功能是将三相交流电(AC)转换为直流电(DC),同时尽量减少电流的脉动。

3. 在三相PWM整流器中,交流电通过整流器被转换成脉冲宽度调制(PWM)信号,这个过程称为电流转换。

说明一下电机控制的逆变器是如何通过pwm技术调整输出三相交流电的频率和电压

一、复合型AC-AC电路

复合型AC-AC电路能够实现三相输出电压的幅值和频率的同时改变。这种电路在交流电机调速、变频器和其他需要调节电压和频率的应用中非常重要。

二、如何改变幅值和频率

1. 改变幅值:

幅值的改变通常通过脉冲宽度调制(PWM)技术实现。控制电路将输入信号转换为PWM信号,通过调整脉冲宽度来控制输出电压的幅值。具体操作是,控制电路接收输入信号,并将其转换为脉冲信号,随后通过改变脉冲宽度来调整输出电压的幅值。

2. 改变频率:

频率的改变则通常通过变频器实现。控制电路首先将输入电源转换为直流电源,然后将直流电源转换为频率可调的交流电源,以此来控制输出电压的频率。具体来说,控制电路接收到输入电源,并将其转换为直流电源,随后再将直流电源转换为频率可调的交流电源,从而实现输出电压频率的控制。

三、需要注意的问题

复合型AC-AC电路的控制电路设计复杂,需要精确的控制算法和电路设计。此外,电路在实际运行中可能会遇到噪声、温度等问题,因此在设计和使用时需要特别注意这些问题。

四、举例说明

以一种基于PWM和变频器的电路设计为例,可以说明如何实现三相输出电压幅值和频率的同时改变。该电路主要由PWM模块、直流-交流变换模块和变频器模块组成。

1. PWM模块:

PWM模块负责控制输出电压的幅值。它接收控制信号,并将输入电压转换为PWM信号。通过调整PWM信号的占空比,可以实现输出电压幅值的控制。

2. 直流-交流变换模块:

直流-交流变换模块负责将PWM信号转换为交流电压。它接收PWM信号和直流电源,并使用逆变器将直流电源转换为可控制的三相交流电压输出。

3. 变频器模块:

变频器模块负责控制输出电压的频率。它接收控制信号,并将输入电源转换为频率可调的交流电源。变频器模块可以采用多种技术实现,如电压-频率(V/F)控制技术或矢量控制技术。

通过上述三个模块的协同工作,可以实现三相输出电压幅值和频率的同时改变。例如,通过增加PWM信号的占空比来增加输出电压的幅值,或者通过改变变频器的频率来改变输出电压的频率。

三相PWM整流KPWM的具体含义是什么啊!!!

1. kPWM 是PWM逆变器的等效增益,表示为 kPWM = Ud/Ut,其中 Ud 是直流母线电压,Ut 是三角波幅值。kuf 和 kif 分别是输出电压和电容电流的反馈系数;Δu 是扰动输入,包括死区时间带来的影响和直流侧电压波动等;io 是负载电流。

2. 在电力系统中,电压和电流应保持完美的正弦波。然而,由于非线性负载的影响,实际的电网电压和电流波形往往存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题。因此,采取措施限制这些对电网和其它设备的影响是非常必要的。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。

3. 电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。

4. 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。

5. 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。

6. PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt和dv/dt。

7. PWM整流器根据主电路中开关器件的多少可以分为单开关型和多开关型;根据输入电源相数可以分为单相PWM整流电路和三相整流电路;根据输出要求可以分为电压源和电流源型。

8. 控制技术是PWM高频整流器发展的关键。要使PWM整流器工作时达到单位功率因数,必须对电流进行控制,保证其为正弦且与电压同相或反相。根据有没有引入电流反馈可以将这些控制方法分为两种:引入交流电流反馈的称为直接电流控制(DCC);没有引入交流电流反馈的称为间接电流控制,间接电流控制也称为相位幅值控制(PAC)。

9. 通过上述分析,PWM整流技术的应用会越来越广泛,其发展也会呈现出多种趋势,但可主要归结为三个方面:功率器件、主电路拓朴和控制方法。

10. (1)新型全控型器件的发展。器件是PWM整流技术赖以实现的基础,新技术的出现和新材料的应用,必然会产生更新、更好的功率器件,从而推动PWM整流技术的发展。

11. (2)主电路拓朴。PWM整流器的最大优势就是对电网的影响较小,为了进一步降低影响,提高功率因数,人们必然会对整流器的拓朴结构进行改进,现在已经出现五电平、七电平结构,随着功率器件和应用水平的提高,必然会有更新、更好的电路拓朴结构出现。

12. (3)控制方法。一方面,主电路拓朴的多样化,必然会引起控制方法的变异,甚至会产生更新、更简单的控制方法;另一方面,现代控制理论和计算机技术的发展也为新的方法的出现奠定了坚实的基础,现在状态反馈控制、变结构控制已经开始应用到PWM整流器的控制中来。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言