Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

lcl型并网逆变器的控制技术

发布时间:2025-01-19 18:00:57 人气:



为什么逆变器双环控制电压环输出是电流,电流环输出是电压?

研究并网逆变器的控制技术,理解其电压环与电流环输出的本质,需关注这两本书的内容。

并网逆变器作为可再生能源与电网间的桥梁,其控制技术至关重要。本书系统介绍并网逆变器的基础理论与控制策略,详细构建数学模型,分析控制方法。针对电能质量问题,提出定制补偿控制技术;针对多台逆变器协同运行,设计协调控制技术;针对电网惯性缺失,实现虚拟同步发电机控制;面对谐波谐振问题,重塑输出阻抗。

LCL型并网逆变器的控制技术是另一重点。书本涵盖LCL滤波器设计、磁集成和阻尼方法,特别针对电容电流反馈有源阻尼的LCL型逆变器,提出设计方法以抑制电网电压对并网电流的影响。对于数字控制LCL型逆变器,揭示控制延时影响,并提出闭环参数设计方法。

深入掌握这两本书的知识,将使逆变器控制设计能力全面提升,应对各种技术挑战。

逆变器滤波器设计研究(LCLLC滤波器*****)

前言

提出一种新型的LCLLC滤波器及其参数设计方法,以解决传统LLCL滤波器在二倍及其以上倍数开关频率电流谐波衰减速率低的问题。所提滤波器不仅具备旁路开关频率谐波电流、减小电网电流谐波的能力,还具有较强的参数鲁棒性。

传统的LLCL并网逆变器输出滤波器

优点:串联谐振支路可以旁路开关频率谐波电流,减小电网电流谐波。

缺点:对二倍及其以上倍数开关频率的电流谐波衰减速率低,转折储幅频特性不陡峭。

新型的LCLLC滤波器

优点:不仅旁路开关频率谐波电流、减小电网电流谐波,还对二倍及其以上倍数开关频率的电流谐波衰减快。

滤波器设计现状

随着逆变器的发展和电能质量要求提高,滤波器研究成为热点。LCL滤波器以其体积小、成本低、高频电流谐波衰减度高而广泛应用。然而,若要满足电网对高次谐波的要求,通常需要加大滤波器参数,增加逆变器成本。为此,业界提出LLCL型并网滤波器拓扑,通过增加LC串联谐振支路旁路开关频率谐波电流,大幅减小并网电流中的开关频率谐波。相较于传统LCL滤波器,LLCL滤波器在成本方面可忽略不计,但滤波性能有所提升,具有广阔的应用前景。

LLCL滤波器及其特性研究

LLCL滤波器在串联谐振支路旁路逆变器开关频率谐波电流方面表现良好,但在高频段谐波衰减速率仅为-20 dB/十倍频程,导致其二倍开关频率电流谐波衰减度不够,难以满足电网标准要求。

LCLLC滤波器LCLLC滤波器提出

为满足电网标准对高次谐波的要求,提出LCLLC滤波器,结合LCL滤波器和串联谐振支路的优点,保留了旁路开关频率谐波电流的优点,同时克服了LLCL滤波器高频衰减速率低的缺点。LCLLC滤波器在开关频率处有一个负的谐振峰,有效滤除一次开关频率处谐波,高频段谐波衰减速率高达-60 dB/十倍频程。

滤波器对比研究

通过仿真和实验对比了LCL、LLCL和LCLLC三种滤波器,结果表明LCLLC滤波器在满足电网标准要求的开关频率及其整数倍频率谐波幅值方面表现最优,同时具有较好的滤波性能和参数鲁棒性。

实验验证

搭建5 kW三相并网逆变器实验样机,分别测试了使用LCL、LLCL和LCLLC滤波器的情况,结果证实LCLLC滤波器在满足电网标准要求的同时,具有最佳的滤波效果和参数鲁棒性。

太阳能光伏并网发电及其逆变控制图书目录

电力电子新技术系列图书序言

前言

第1章 绪论

1.1 太阳能及其光伏产业

1.2 光伏并网发电技术的发展

1.2.1 国内外光伏并网发电技术的发展

1.2.2 国内外光伏并网发电的激励政策

1.2.3 我国光伏发电中长期发展规划

1.3 国内外大型光伏发电系统简介

1.3.1 SpfingervilleGeneratingStation(SGS)大型荒漠光伏电站

1.3.2 APSStarCenter调峰电站

1.3.3 Prescott的荒漠电站

1.3.4 国外10MW以上大型光伏电站

1.3.5 我国大型光伏并网电站(超过200kW)现状

第2章 光伏电池与光伏阵列

2.1 光伏电池的物理基础

2.2 光伏电池的制作

2.2.1 单晶硅电池的制作流程

2.2.2 光伏电池组件及其封装

2.2.3 光伏电池组件的出厂检测

2.3 光伏阵列的建模与工程计算方法

2.4 光伏电池的应用设计

2.5 光伏电池新技术与新品种

2.6 第三代光伏电池技术

2.7 光伏电池研究的最新成果

第3章 光伏并网系统的体系结构

3.1 集中式结构

3.2 交流模块式结构

3.3 串型结构

3.4 多支路结构

3.5 主从结构

3.6 直流模块式结构

3.7 小结

第4章 光伏并网逆变器的电路拓扑

4.1 光伏并网逆变器的分类

4.2 隔离型光伏并网逆变器

4.3 非隔离型光伏并网逆变器

4.4 多支路光伏并网逆变器

第5章 光伏并网逆变器控制策略

5.1 光伏并网逆变器控制策略概述

5.2 基于电流闭环的矢量控制策略

5.3 直接功率控制(DPC)

5.4 基于LCL滤波的并网光伏逆变器控制

5.5 单相并网逆变器的控制

第6章 光伏发电的最大功率点跟踪(MPPT)技术

6.1 概述

6.2 基于输出特性曲线的开环MPPT方法

6.3 扰动观测法

6.4 电导增量法(INC)

6.5 智能MPPT方法

6.6 两类基本拓扑结构的MPPT控制

6.7 MPPT的其他问题

第7章 并网光伏发电系统的孤岛效应及反孤岛策略

7.1 孤岛效应的基本问题

7.2 基于并网逆变器的被动式反孤岛策略

7.3 基于并网逆变器的主动式反孤岛策略

7.4 不可检测区域(NDZ)与反孤岛策略的有效性评估

第8章 阳光的跟踪与聚集

8.1 阳光跟踪与聚集的意义

8.2 阳光跟踪系统的设计

8.3 阳光聚集系统设计

第9章 光伏发电并网的电能质量仿真计算

9.1 概述

9.2 光伏发电等值电路和计算模型

9.3 光伏发电并网系统的电能质量仿真计算

附录 光伏并网发电标准简介

单相小功率逆变器拓扑

逆变器技术在光伏并网系统中的应用日益广泛,尤其在低压电网指令和无功调节方面面临挑战。常见拓扑结构在抑制漏电流和共模电流方面存在局限性,因此高效抑制漏电流的拓扑架构和共模电流抑制成为关键。本文将详细介绍逆变器拓扑在这些问题上的解决方案和改进。

传统小功率逆变器主要使用H4单相全桥拓扑,但由于存在漏电流问题,需要通过改变调制策略或增加RC吸收电路、输出隔离变压器等方式解决,这些措施会导致效率下降、体积增大和成本增加。德国SMA公司推出的H5结构从根本上解决了漏电流问题,随后出现了一系列解决漏电流的拓扑,如H6、双Buck拓扑等,这些拓扑在提高效率方面表现出色。

抑制共模电流是提升逆变器性能的关键之一。共模电流影响系统安全,降低效率,并引入谐波。逆变器中寄生电容的存在导致共模电压变化,进而产生共模电流。抑制共模电流的方法主要是降低共模电压的频率或维持共模电压不变。在实际应用中,选择合适的拓扑结构对于抑制共模电流至关重要。

H4和H6拓扑在抑制共模电流方面的性能分析表明,H6拓扑相对H4拓扑在共模电流抑制上具有优势。H6逆变拓扑采用单极性SPWM调制,产生高频SPWM输出波形,通过LC滤波器连接市电。控制环路通过采样BUS电压、市电电压和电感电流,实现输出电流与市电电压相位的同步,同时满足各法规对输出电流的要求。在工作原理中,H6逆变桥采用6个开关管驱动波形,实现高频和低频开关管的优化配置,以减少损耗和提高效率。

在H6拓扑中,开关管的选取考虑了开关频率和电流峰值等因素,以确保在稳定工作条件下,高频开关管开关动作时的△Vds范围较小,从而减少开关损耗。此外,通过合理配置二极管、滤波电感和滤波电容,实现逆变器的高效运行和良好的电流输出波形。

为了进一步优化逆变器的性能,设计了差分采样电路和抬升电路,以满足DSP28335的ADC输入电压范围需求。逆变器的输出滤波器采用LC或LCL结构,选择合适的滤波器结构以满足不同应用场合的需求,从而实现对高频谐波的有效衰减。

最后,通过双极性和单极性SPWM控制方式的比较,双极性SPWM虽然在损耗和电感电流纹波方面相对较高,但不存在共模漏电流问题,且不容易产生过零点畸变。因此,在设计逆变器控制策略时,需要综合考虑效率、损耗和系统稳定性等因素。

综上所述,高效抑制漏电流的拓扑架构和共模电流抑制策略是小功率逆变器面临的技术难题。通过采用先进的拓扑结构、优化控制策略和合理配置电路组件,可以显著提升逆变器的性能和可靠性,满足低压电网指令和无功调节的需求。

两个相反的c中间加一竖是什么牌子的手表

LCL型并网逆变器因具有优越的高频谐波抑制能力而受到广泛重视,在光伏、储能等并网中应用较多。并网逆变器采用LCL滤波器,具有更优的高频谐波衰减性,滤波效果更佳。本次主要对单相和三相LCL逆变拓扑模型进行讲解。

LCL并网逆变器的拓扑结构如下图所示,其中idc为直流侧电流,Udc两端为直流侧母线电压,L1,L2,C组成三阶LCL滤波器,r1为电感L1等效阻抗,r2为电感L2等效阻抗,Us/Ug为电网电压。控制说明 LCL型并网逆变器的电流控制策略可分逆变器侧电感电流控制的间接电流控制策略、直接电流控制策略和两者混合控制的策略。而针对并网逆变器LCL滤波器的高频谐振问题,常采用无源阻尼控制和有源阻尼控制两种方法抑制。

无源阻尼控制有滤波器电感或电容支路串联或并联电阻四种,它实现简单,不需要额外的控制环节,但是会额外增加系统的功率损耗。有源阻尼控制主要包括虚拟电阻法、在前向通道中添加陷波滤波器、分裂电容法、零极点配置法以及电容电流补偿法等。有源阻尼法的优点是在不增加系统损耗、不影响滤波器对高频谐波的抑制能力下,通过控制算法有效抑制谐振尖峰。

本模型中采用无源阻尼通用双闭环控制,外环为电网电流控制(一般

PLECS TI C2000嵌入式代码生成 应用范例13(122):并网三电平NPC逆变器的SVPWM控制

并网三电平NPC逆变器的SVPWM控制与嵌入式代码生成应用概述

该文章介绍了使用空间矢量脉宽调制(SVPWM)和中性点平衡技术在电流闭环中对并网三电平NPC逆变器的仿真。此演示模型展示了如何在使用德州仪器(TI)C2000 MCU的PLECS嵌入式编码器上实现典型工作流程。结合PLECS RT Box,可以直接验证MCU的性能。

电源电路包括通过LCL滤波器连接到电网的三相NPC逆变器。当“Sun”处于标称辐射水平时,直流输入提供800 V的全电压。两个直流电容器分别向逆变器的上半部分和下半部分提供输入。SVPWM算法中包含了中性点平衡技术。

控制部分包含两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。控制器模型中实现了ADC和PWM块,将直流链路电压、交流电流、交流电压和滤波电容器电流的测量引入到模型环境中。

在“Controller”子系统中,实现了两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。它包含来自TI C2000目标组件库的ADC和PWM块。SVPWM方案中有三个NPC支路(相位u、v和w),每个支路包含四个开关,通过控制这四个开关,逆变器输出允许三种不同的电压水平。

中性点平衡技术基于主动控制中性点电流。该技术基于在SVPWM矢量图中操纵零矢量对以平衡中性点。

配置TI C2000目标库组件时,SVPWM调制器的输出以占空比的形式提供给PWM块作为输入,配置包括载波类型、载波频率和消隐时间参数。通过RT Box启动板接口板上的dip开关“DI-29”可以启用或禁用PWM信号。

仿真部分展示了如何将“Controller”子系统直接转换为TI 28379D启动板的目标特定代码。在实时模型运行中,观察实时波形,调整MCU中控制程序的参数。

结论部分总结了此模型演示了支持TI C2000 MCU嵌入式代码生成的并网NPC逆变器系统的实现。

基于准PR控制的LCL三相并网逆变器仿真模型(Simulink仿真实现)

基于准PR控制的LCL三相并网逆变器仿真模型,利用Simulink进行实现。该逆变器在电力电子领域具有高效性、高功率密度和可编程性强的特性,广泛应用于可再生能源、电动汽车等领域。

构建电力系统模型时,需包含直流电源、LCL三相并网逆变器、输出滤波器和电网。在逆变器中,需建立准PR控制器模型,实现对输出电压和电流的控制。模型建立需考虑电感值、电容值、阻值等参数的精确性,仿真中应实时监控和记录数据,分析和验证结果,并对仿真结果进行优化和调整,以满足实际应用需求。

运行结果方面,通过Simulink仿真,模型运行稳定,输出符合预期,验证了准PR控制在LCL三相并网逆变器中的有效性。

参考文献中提及的相关研究,有助于理解准PR控制在LCL三相并网逆变器中的应用及分析方法。如有引用或借鉴,会注明出处,并保持内容的准确性。

具体Simulink仿真实现步骤及详细讲解将在后续文档中提供,以满足对准PR控制在LCL三相并网逆变器仿真模型构建和运行细节的深入理解需求。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言