发布时间:2025-01-18 13:10:04 人气:
光伏组串逆变器是怎样把直流电变成交流电的?
并网式光伏发电系统是将太阳能电池阵列输出的直流电转化为与电网电压同幅、同频、同相的交流电,并实现与电网连接并同步向电网输送电能。系统包括太阳能电池阵列、DC/DC变换器、DC/AC并网同步正弦波逆变器而把直流电变压交流电的是并网同步正弦波逆变器,逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥(大功率开关管)、控制逻辑(芯片)和滤波电路组成。
逆变器:组串式VS集中式 孰优孰劣
要求:
组串式逆变器的劣势:组网方式限制——其逆变器间无高频载波同步,无法解决逆变器间的并联环流问题;距离箱变远端的逆变器线路阻抗较大;多机并联模式——多台逆变器在电网电业跌落时会无法统一输出电压及电流的相位。
集中式并网逆变器:均可通过实验室和现场的低电压穿越测试。
(2)防孤岛保护
孤岛效应:是指当电网的部分线路因故障或维修而停电时,停电线路由所连的并网发电装置继续供电,并连同周围负载构成一个自给供电的孤岛的现象。GB/T19964-2012标准要求电站具有防孤岛保护设备,通常情况下逆变器采用主动+被动双重防孤岛保护,以保障在任何情况下逆变器能可靠地断开与电网的连接。主动保护通常采用向电网注入很小的干扰信号,通过检测回馈信号判断是否失电,而被动保护通常采用检测输出电压、频率和相位的方式来判定孤岛状态的发生。
组串式逆变器:交流侧直接并联,因主动保护而采用注入失真信号的方式无法应用在多机并联的系统中,无法执行孤岛保护中的主动保护。
——应用风险:产生谐振孤岛将会对线路检修人员造成安全威胁,对用电设备造成损害,严重影响电站的运行安全等等。
集中式逆变器:交流输出无需汇流,直接接入双分裂绕组变压器,同时执行主动和被主动孤岛保护。
(3)支持电网调度
两者共同点:均采用RS485作为通讯接口,回应速度均相应较慢。
组串式逆变器:每兆瓦需对40台逆变器调度,不利于电站的远端调度管理;
集中式逆变器:每兆瓦仅对2台逆变器调度,较为方便。
(4)PID效应抑制策略
目前公认的最为可靠抑制PID效应的解决方法:逆变器负极接地
组串式逆变器:采用虚拟负极接地电路的方式来抑制PID效应,如虚拟电路发生故障组串式逆变器则无法保障对PID效应抑制,远比实体负极接地可靠性差。
集中式逆变器:采用绝缘阻抗监测+GFDI(PV Ground-Fault Detector Interrupter,由分断器件和传感器组成)方案,即逆变器即时监测PV+对地阻抗。当PV+对地阻抗低于阈值的时候,逆变器就会立刻报警停机。
组串式逆变器是什么
组串式逆变器是一种用于光伏电站的电力转换设备。
组串式逆变器是光伏电站中的重要组成部分,它负责将光伏组件产生的直流电转换为交流电,以便能够接入电网进行供电。相较于其他类型的逆变器,组串式逆变器具有其独特的特点和应用场景。
首先,组串式逆变器的最大特点是其模块化设计。这种逆变器采用多个模块化单元组合而成,每个单元都可以独立工作,并在高功率需求时并行运行。这种设计使得组串式逆变器能够适应大规模光伏电站的需求,通过灵活的扩展来实现高效的电力转换。
其次,组串式逆变器适用于分布式光伏电站。由于其结构紧凑、易于安装和维护,组串式逆变器在分布式光伏电站中得到广泛应用。它能够连接多个光伏组件的串联阵列,将产生的直流电转换为适合电网接入的交流电。此外,组串式逆变器还具有高度的可靠性和稳定性,能够保证光伏电站的长期稳定运行。
最后,组串式逆变器还具有优秀的性能表现。它具有较高的转换效率和较低的故障率,能够有效地提高光伏电站的整体运行效率。同时,组串式逆变器还能够实时监测光伏组件的工作状态,并通过智能控制系统进行自动调整和优化,以确保光伏电站的高效运行。
总的来说,组串式逆变器是一种用于光伏电站的电力转换设备,具有模块化设计、适用于分布式光伏电站、以及优秀的性能表现等特点。它通过转换直流电为交流电,为光伏电站的电力输出和电网接入提供了重要的支持。
组串式逆变器和集中式逆变器的区别
组串式逆变器与集中式逆变器在基本功能上有所不同,主要体现在功率大小和结构特性上。首先,集中式逆变器功率范围较大,通常在50KW到630KW之间,采用的是大电流IGBT作为核心器件,其系统拓扑结构采用了一级DC-AC电力电子变换,即全桥逆变,常采用工频隔离,通过变压器实现防护,防护等级一般为IP20,体积相对较大,适合室内立式安装。
相比之下,组串式逆变器的功率较小,通常小于30KW。其采用小电流MOSFET,拓扑结构更为复杂,采用DC-DC-BOOST升压和DC-AC全桥逆变的两级电力电子器件变换。这种设计使得组串式逆变器的体积较小,适应性更强,可以室外臂挂式安装,更加灵活。
在市场选择上,国内有几家知名的逆变器厂家,如全天科技、华为和阳光等,他们的产品质量和性能均受到认可。总的来说,组串式逆变器与集中式逆变器各有优缺点,选择哪种类型,主要取决于实际应用的需求,如功率需求、安装环境等因素。
一文读懂:微型逆变器与组串式逆变器的区别
光伏并网逆变器是光伏系统的核心部件,主要功能是将光伏组件产生的直流电转换为适合电网要求的交流电。目前,分布式光伏领域常见的逆变器类型有微型逆变器和组串式逆变器。
微型逆变器对每块或多块光伏组件进行独立的最大功率点跟踪(MPPT),并对组件输出功率进行精细化调节及监控,通常功率在4kW以下。而组串式逆变器对一串或多串光伏组件进行单独的MPPT,功率范围则在1.5kW至500kW之间。
微型逆变器与组串式逆变器在产品拓补结构与电路设计上存在本质差异。微型逆变器采用单组件独立或并联输入设计,而组串式逆变器则采用多组件串联输入设计。这导致两者在运行电压、系统综合效率、运维方式及安装位置等方面存在显著不同。
在运行电压方面,微型逆变器系统中组件以并联方式连接,直流电压不超过120V;而组串式逆变器系统为串联电路,系统运行时电压累计可达600V至1000V。
就系统综合效率而言,微型逆变器每块组件都有独立的MPPT,实现对每块组件的独立追踪,精确追踪功率最大输出点,避免“短板效应”。相反,组串式逆变器的MPPT接入单个或多个“组串”,可能影响单块组件的发电情况,从而影响整串组件的发电效率。
运维方式上,微型逆变器实现组件级控制,运维时可查看每块组件的详细信息,如位置及发电情况。而组串式逆变器进行组串级控制,运维时只能看到整串组件的总体信息。
安装位置方面,微型逆变器模块化设计,体积小、重量轻,可直接安装在光伏支架上,实现即插即用,安装灵活。而组串式逆变器通常安装在某一串组件下方,采用固定或抱箍式安装。
综上所述,微型逆变器和组串式逆变器各有优势和适用场景。在选择逆变器时,应根据具体需求和环境条件,因地制宜选择合适的逆变器类型。组串式逆变器因其成熟可靠的技术和成本优势,在分布式光伏市场应用广泛。而微型逆变器在技术进步的推动下,其单瓦成本也在不断下降,未来将在更多场景中得到应用,以满足对光伏电站安全、效率及智能化运维的需求。
到底什么是组串式逆变器?
在电力系统中,组串式逆变器是一种备受关注的设备。它的主要特点是能够直接集成并串连接,特别适用于户外分布式安装,无论是单相还是三相输出,其功率范围广泛,从几千瓦到几十千瓦。比如古瑞瓦特系列中就有很多型号的逆变器采用了这种设计。组串式逆变器的优势在于其高效、灵活,能够适应各种规模的太阳能发电系统,是现代太阳能电站不可或缺的一部分。
逆变器分类:集中式、组串 式、集散式及微型
逆变器分类:集中式、组串式、集散式及微型
逆变器按技术、电压、储存、应用领域等分类,分为光伏并网与储能逆变器、单相与三相逆变器、并网与离网系统逆变器、集中式与分布式光伏逆变器。集中式逆变器将直流电汇总逆变为交流电,功率较大,通常在500KW以上,优势为输出功率大、成本低、电能质量高,但MPPT跟踪精度不足,影响效率和电力产出,且需专用机房。代表企业包括阳光电源、上能电器。
组串式逆变器对光伏组串进行单独MPPT跟踪后再逆变,功率在100KW以下,具有灵活配置、高发电量、MPPT数量多等优点,适合户用分布式发电、中小型屋顶电站,也可用于集中式系统。
集散式逆变器结合集中与分散优势,通过前置多个MPPT控制,汇流后集中逆变,提升发电量、电能质量,适应电网,但工程经验不足,安全稳定性待验证。
微型逆变器对每块组件单独进行MPPT跟踪,适合小项目,具有独立控制、提高效率、降低安全隐患的优点,但成本高,维护困难。
性能对比显示,集中式逆变器成本低、可靠性高;组串式逆变器发电量高、灵活性好;微型逆变器提高效率、安全性,但价格昂贵。逆变器行业技术壁垒高,需长期研发,满足电网和用户端需求。逆变器作为“大脑”和“心脏”,需精确算法支持,适应电网变化,提供智能化运维数据。
综上,逆变器分类多样,各有优势和局限性,技术壁垒高,企业需不断研发新产品以适应市场和应用需求。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467