发布时间:2024-12-24 18:10:18 人气:
三相四线制逆变器并网电流复合控制策略
本文介绍了一种创新的三相四线制逆变器并网电流复合控制策略,旨在融合PI控制的高速度、PR控制的带宽和精度以及重复控制的全面跟踪特性,以优化并网性能和补偿负载影响。策略通过基波正序电压检测器补偿电流,确保电位基波正序电流三相对称,适应电网电压的畸变和不平衡状态。
在实际应用中,逆变器内环采用PI控制跟踪直流分量,PR控制针对特定频率谐波,而重复控制处理所有谐波,通过双谐振特性减少PR控制器数量。系统结构中,利用PLL提取电网电压相位,正序电压和电流参考值根据需求计算。面对非理想工况,如电压畸变和不平衡,复合控制策略确保逆变器在这些情况下仍能快速、精确地跟踪并网电流指令,降低谐波和不平衡度。
具体来看,复合控制策略的仿真结果表明,即使在负荷变化和电压不理想的情况下,逆变器仍能保持三相电流的对称性和中线电流的极小化,显示了该控制策略的有效性和稳定性。
IGBT的控制方式
调幅控制方法通过调节直流电压源输出的电压Ud,来实现对逆变器输入电压的控制,进而调节输出功率。这种控制方式可通过移相调压电路或者斩波调压电路结合电感和电容构成的滤波电路实现。利用锁相环(PLL)完成电流和电压之间的相位控制,以保证较高的功率因数输出。调幅控制方法的优点在于控制简便,但电路结构较为复杂,体积较大。
脉冲频率调制(PFM)方法则侧重于改变逆变器的工作频率,以此调整负载输出阻抗,实现对输出功率的调节。这种控制方式能够提高系统的响应速度和效率,但频率调整范围受限。
脉冲密度调制(PDM)方法通过控制脉冲密度,即调节向负载馈送能量的时间,来控制输出功率。这种方法能够实现精确的功率控制,但在高密度脉冲条件下可能引起电磁干扰。
谐振脉冲宽度调制(PWM)方法通过改变两对开关管的驱动信号相位差,调整输出电压值来调节功率。这种方法能够实现高效率的功率转换,同时控制精度较高,但需要精确的相位控制。
脉宽加频率调制方法是一种复合型控制方法,综合了上述方法的优点,以提高系统的性能和稳定性。这种方法能够实现更灵活的功率调节,适应多种应用需求。
光伏并网系统主要的控制策略包括哪几种
光伏系统并网逆变器控制策略的研究,对于太阳能发电技术的进步至关重要。新能源技术的迅速崛起,特别是太阳能,以其丰富的资源、广泛的地域覆盖和清洁特性,成为最具发展潜力的可再生能源之一。自21世纪初以来,全球太阳能光伏产业经历了快速增长,市场应用规模不断扩大,对全球能源发展产生了深远影响。开发和利用太阳能光伏技术,是我国构建资源节约型社会、实施节能减排和可持续发展战略、提高生存环境质量的关键举措之一。
在光伏逆变器并网运行过程中,逆变器主要表现为电流源。主要挑战包括有效控制输出电流,并尽量减少对电网谐波的污染,同时确保与电网电压的频率和相位一致。逆变器作为并网系统的核心组件,其控制和调节技术是该系统的关键技术。目前,全球范围内都在积极研究和开发光伏并网技术,目标是实现与电网的无冲击并网。
本文针对光伏系统中的逆变器,分析了基于电流跟踪和电压跟踪的PWM(脉宽调制)控制策略,并提出了一种新型的具有功率跟踪功能的电流控制策略。PWM调制策略不仅实现了逆变器的灵活可靠控制,而且减少了谐波含量,提升了输出电能的质量。在并网逆变器中,电流控制方式将逆变器输出视为电流源,与电网的并联操作类似于电流源与电压源的并联。通过控制逆变器输出电流的频率和相位,以同步电网电压的变化,实现并联运行。
常见的电流跟踪控制策略包括瞬时值滞环控制、三角波比较控制和无差拍控制等。这些策略各自具有独特的优势,在实现电流跟踪和提升系统性能方面扮演着重要角色。光伏系统利用太阳电池组件和其他辅助设备将太阳能转换为电能,一般分为独立系统、并网系统和混合系统。根据应用形式、规模和负载类型的不同,太阳能光伏系统还可以进一步细分为六种类型。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467