发布时间:2024-11-03 18:50:16 人气:

逆变器原理
逆变器的工作原理如下:
首先,当直流电源接入逆变器电路时,Q11和Q14晶体管会导通,而Q1和Q13则会截止。此时,电流从直流电源的正极流出,经过Q11、电感L或变压器初级线圈,再流经Q14,最后回到电源的负极。
接下来,当Q11和Q14截止后,Q12和Q13会导通。这时,电流的路径改为从电源正极经过Q13、变压器初级线圈的电感,再流到Q12,最后回到电源负极。
在上述过程中,变压器初级线圈上形成了正负交变的方波。通过高频PWM(脉冲宽度调制)控制,两对IGBT(绝缘栅双极型晶体管)管交替重复工作,从而在变压器上产生交流电压。
最后,LC交流滤波器会对这个交流电压进行滤波处理,使得输出端能够形成正弦波交流电压。另外,在Q11和Q14关断时,为了释放储存的能量,会在IGBT处并联二级管D11和D12,使得能量能够返回到直流电源中。
逆变器工作原理 看看这专业的解释
逆变器工作原理及专业解释
逆变器是将直流电(DC)转换为交流电(AC)的装置,广泛应用于多个领域。其基本工作原理涉及直流电源、逆变桥、控制逻辑和输出滤波器。下面详细解析逆变器的工作原理及其分类。
一、逆变器工作原理
1. 全控型逆变器:采用IGBT(绝缘栅双极晶体管)等全控器件,通过PWM(脉宽调制)信号控制IGBT的导通与截止,产生交流电。在全桥逆变器中,当Q11和Q14导通时,电流从直流电源的正极流向Q11,经过电感L和变压器初级线圈,回到Q14,然后回到负极。随后,Q12和Q13导通,电流方向相反。通过PWM控制,输出端得到连续的正弦波交流电。
2. 半控型逆变器:使用晶闸管等半控器件,主电路如图4所示。Th1和Th2交替导通,通过变压器产生交流电。当Th1导通时,电容器C充电至两倍直流电压。Th2导通时,Th1截止,电流方向改变。晶闸管交替工作,实现交流电的输出。
二、逆变器分类
1. 按输出频率:工频、中频和高频逆变器。
2. 按输出相数:单相、三相和多相逆变器。
3. 按输出电能去向:有源逆变器(输送到电网)和无源逆变器(输送到负载)。
4. 按主电路形式:单端式、推挽式、半桥式和全桥式逆变器。
5. 按主开关器件类型:晶闸管、晶体管、场效应晶体管和IGBT逆变器。分为半控型和全控型。
6. 按直流电源:电压源型(VSI)和电流源型(CSI)。
7. 按输出波形:正弦波和非正弦波逆变器。
8. 按控制方式:调频式(PFM)和调脉宽式(PWM)逆变器。
9. 按开关电路工作方式:谐振式、硬开关式和软开关式逆变器。
10. 按换流方式:负载换流式和自换流式逆变器。
了解逆变器的深入原理和分类,有助于在实际应用中选择合适的逆变器类型,并优化其性能。希望以上解释对您有所帮助。如需更多信息,请访问土巴兔装修网。土巴兔提供免费的家装报价、设计方案和装修避坑指南。点击链接/yezhu/zxbj-cszy.phpto8to_from=seo_zhidao_m_jiare&wb,即可免费获取。
逆变器是通过方波的叠加还是通过PWM方式调节占空比的方式实现直流变正弦的?
1. 逆变器主要分为正弦波逆变器和方波逆变器。正弦波逆变器采用正弦脉宽调制(SPWM)技术,利用IGBT高频逆变,实现直流到交流的转换。
2. 方波逆变器,也称为修正波逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,相较于普通方波有所改善,但本质上仍属于方波范畴。
3. 正弦波逆变器内部采用交—直—交结构,选用IGBT作为开关元件。通过SPWM方式控制逆变器,输出脉宽调制波。
4. SPWM采用双极性方式,同一桥臂上下两只IGBT元件为互补通断,对角元件同时通断。这样,输出的SPWM波幅值恒定,宽度按正弦规律变化,从而得到所需频率的交流基波。
5. 输出的脉宽调制波经过LC滤波电路滤波后,得到纯正的正弦波交流电。该电经过变压器隔离变压,得到所需的交流电。
6. 修正波逆变器通常采用简易的多谐振荡器,技术相对较早。其输出波形虽然有所改善,但仍然是由折线组成,属于方波范畴。
1.1 单相全桥逆变器基础仿真之双极性调制与单极性调制的差异
单相全桥逆变器PWM调制技术主要分为单极性调制与双极性调制,其核心差异在于调制脉冲的极性。单极性调制中,调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。在ur的正半周,V1保持通态,V2保持断态;在ur的负半周,V1保持断态,V2保持通态。输出uo的电平取决于ur与uc的关系。双极性调制中,在ur的半个周期内,三角波载波有正有负,产生的PWM波电平为±Ud,在ur的一个周期内,输出的PWM波只有两种电平。单极性调制的原理相对复杂,需要通过比较调制波与0的值来决定各开关器件的通断状态,而双极性调制则更为直观,只需要将调制波与载波比较即可产生PWM信号。在仿真搭建上,双极性调制模块的内部结构和参数设置相对简单,而单极性调制则需通过额外的逻辑处理来解决载波正负循环问题。仿真结果显示,在闭环控制条件下,单极性调制下的输出电流谐波含量更低,其性能远超双极性调制方式,同样开关频率下,输出电流的谐波含量显著减少。
逆变器原理图讲解
1. 接通直流电源后,逆变器电路首先由Q11和Q14导通,同时Q1和Q13处于截止状态。
2. 此时,电流由直流电源的正极输出,经过Q11、L(电感)和变压器的初级线圈,最终通过Q14回到电源的负极。
3. 当Q11和Q14截止时,Q12和Q13开始导通,电流的流动路径转变为从电源正极出发,通过Q13、变压器初级线圈和电感,最后由Q12回到电源负极。
4. 通过高频PWM(脉宽调制)控制,使得两对IGBT(绝缘栅双极晶体管)管交替工作,从而在变压器初级线圈上形成正负交变方波。这一过程不断重复,最终在变压器上产生交流电压。
5. 经过LC(电感和电容)交流滤波器的作用,输出端得到的是正弦波交流电压。当Q11和Q14关断时,为了释放存储的能量,在IGBT处并联的二极管D11和D12将能量返回到直流电源中。
逆变器原理图和制作
1. 逆变器初始通电时,Q11和Q14导通,而Q1和Q13关闭。电流从直流电源的正极出发,通过Q11,流经电感L或变压器初级线圈,然后通过Q14返回到电源的负极,形成闭合的电流路径。
2. 随后,当Q11和Q14关闭时,Q12和Q13开启,电流路径改变。电流从电源正极经过Q13,流过变压器初级线圈和电感,最后通过Q12返回负极。这一过程在变压器初级线圈中产生正负交替的方波信号。
3. 高频PWM(脉宽调制)控制机制开始工作,它控制两对IGBT(绝缘栅双极晶体管)管不断地导通和截止,从而驱动变压器产生交流电压。
4. LC交流滤波器在这一环节中起到关键作用,它滤除交流电压中的高频噪声,确保输出端得到的是纯净的正弦波交流电。
5. 在Q11和Q14停止工作时,为了释放存储在电感和变压器中的能量,会在IGBT管Q11和Q14的并联位置接入二极管D11和D12。这样,能量通过二极管返回直流电源,完成逆变器一个完整的电力转换循环。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467