Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器背景 太阳能并网逆变器研究的背景和意义

发布时间:2023-10-17 12:20:25 人气:

太阳能并网逆变器研究的背景和意义

当前, 随着化石能源消耗的不断增长和地球生态环境的日益恶化,世界各国都在积极寻找一种可持续发展且对生态环境无污染的新能源。太阳能作为一种高效无污染的新能源,已成为了雹哪明当今能源结构中一个重要的组成部分。光伏并网发电技术已成为太阳能光电应用的主流。本文以光伏并网发电系统为研究对象,对其进行了详细的分析和研究。首先,本文介绍了课题的研究背景、研究意义、光伏发电的现状与发展情况。并提出了保证光伏并网发电系统正常运行所需的关键技术问题。其次,根据太阳能电池的工作原理分析其工作特性并建立数学模型。逐章对光伏并网发电系统的各种关键技术问题进行了详细的分析与研究,提出具有针对性的解决方案。介绍了最大功率点跟踪原理以及目前常用的几种跟踪方缓世法,通过对这几种常用控制方法的研究对比找出其运行中存在的优缺点,提出了基于模糊/PID双模态的MPPT跟踪方法。对光伏并网发电系统的孤岛检测问题进行了较为深入的理论分析和研究,提出基于周期性双向扰动正反馈有源频率漂移法的孤岛主动检测方法,以提高电源告力终端电网的安全性和供电的可靠性

逆变器与dc dc的作用分别是什么?

DC/AC逆变器,DC/AC逆变器的基本原理是什么?

2010年03月23日 13:55www.elecfans.co 作者:佚名用户评论(3)

关键字:DC/AC(5)逆变器(328)

DC/AC逆变器,DC/AC逆变器的基本原理是什么?

背景知识:

DC/AC逆变技术能够实败渣现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。

DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。但转换输出的波形却很差,是含有相当多谐波成分的方波。而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个察清悄主要问题。


基本原理:

常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。具体如下:

DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。

1,Buck型DC/AC逆变器

Buck型DC/AC逆变器电路基本拓扑如图所示。

采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。

虽然有一个直流偏置电压出现在负载的任一端,但负载两端电压为正负交变的正弦波电压,并且其直流电压为零。由于DC/AC变换器的输出电流是正负交变的,因此要求电路中的Buck变换器的电流能双向流通,如图1所示电路由两组双向Buck变换器组成。一组电流双向流通的Buck变换器可见图3所示。凡与又是一对互补控制的开关管,D1和D2为反并止极管。当开关S1闭合、S2打开时正拿,若电感电流方向为正,则电流流经S1,若为负则电感电流经D1续流。当S1打开、S2闭合时,若电感电流方向为正,则电流经D2续流,若为负则电感电流流经S2。



2,Boost型AC/AC逆变器

Boost型DC/AC逆变器电路基本拓扑如图所示。采用了两组对称的Boost电路,负载跨接在两个Boost变换器的输出端,并以正弦的方式调节Boost变换器的输出电压,进行D/AC的变换。它包括直流供电电Vm,输出滤波电感L1和L2,功率开关管S1-S4,滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。通过滑模控制,使输出电容电压K和K随参考电压的变化而变化,从而使两个Boost变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。获得的输出电压为V0 = V1-V2,是一个正弦电压。

3,Buck-Boost型DC/AC逆变器。基本原理为上述两种结构的中和,这里就不做太多解释了。

现状和发展:

一般认为,DC-AC逆变器的发展可以分为如下两个阶段。

1,1956-1980年为传统发展阶段。这个阶段的特点是:开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加为主,体积重量较大,逆变效率低。正弦波逆变器开始出现。1960年以后,人们注意到改善逆变器波形的重要性,并开始进行研究。

1963年,F.G.Turnbull提出了“消除特定谐波法”,为后来的优化PWM法奠定了基础,以实现特定的优化目标,如谐波最小、效率最优、转矩脉动最小等。

1980年到现在为高频化新技术阶段。这个阶段的特点是:开关器件以高速器件为主,逆变器的开关频率较高,波形改善以PWM法为主,体积重量较小,逆变效率高。正弦波逆变器技术发展日趋完善。

20世纪70年代后期,可关断晶闸管GTO、电力晶体管GTR及其模块相继实用化。80年代以来,电力电子技术与微电子技术相结合,产生了多种高频化的全控器件,并得到了迅速发展,如功率场效应晶体管Power MOSFET,绝缘门极晶体管IGT或IGST,静电感应晶体管SIT,静电感应晶闸管SITH、场控晶闸管MCT, MOS晶体管MGT、IEGT以及IGCT等。这就使电力电子技术由传统发展时代进入到高频化时代。在这个时代,具有小型化和高性能特点的新逆变技术层出不穷,特别是脉宽调制波形改善技术得到了飞速的发展。

今后,随着工业和科学技术的发展,对电能质量的要求将越来越高,包括市电电网在内的原始电能的质量可能满足不了设备的要求,必须经过电力电子装置变换后才能使用,而DC/AC逆变技术在这种变换中将起到重要的作用。

逆变器工作原理是什么?

逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。

逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等 。

简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。

逆变器的工作原理是什么?

将交流电变为直流电.然后用电子元件对直流电进行开关.变为交流电.
工作过程一般分为整流电路、平波电路、控制电路、逆变电路四大过程。
1. 整流电路
整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块.
2. 平波电路
平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源的直流部分对主电路而言有余量,故省去电感而采用简单电容滤波平波电路。
3. 控制电路
现在变频调速器基本系用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。
变频器是输出电压和频率可调的调速装置。提供控制信号的回路称为主控制电路,控制电路由以下电路构成:频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”。运算电路的控制信号送至“驱动电路”以及逆变器和电动机的“保护电路
变频器采取的控制方式,即速度控制、转拒控制、PID或其它方式
4 逆变电路
逆变电路同整流电路相反,逆变电路是将直流电压变换为所要频率的交流电压,以所确定的时间使上桥、下桥的功率开关器件导通和关断。从而可以在输出端U、V、W三相上得到相位互差120°电角度的三相交流电压。

三相两电平并网逆变器的研究背景

全球能源危机和环境污染的日益严重。
根据相关资料查询显示三相两电平并网逆变器的研究背景是全球能源危机和环境污染的日益严重,开发和利用清洁的可再生能源势在必行。
三相是指逆变器的输出是三相输出,一般可以三相四线或三相五线制(有无零线)。

太阳能并网逆变器研究的背景和意义?

当前, 随着化石能源消耗的不断增长和地球生态环境的日益恶化,世界各国都在积极寻找一种可持续发展且对生态环境无污染的新能源。

太阳能作为一种高效无污染的新能源,已成为了当今能源结构中一个重要的组成部分。光伏并网发电技术已成为太阳能光电应用的主流。本文以光伏并网发电系统为研究对象,对其进行了详细的分析和研究。首先,本文介绍了课题的研究背景、研究意义、光伏发电的现状与发展情况。并提出了保证光伏并网发电系统正常运行所需的关键技术问题。其次,根据太阳能电池的工作原理分析其工作特性并建立数学模型。逐章对光伏并网发电系统的各种关键技术问题进行了详细的分析与研究,提出具有针对性的解决方案。介绍了最大功率点跟踪原理以及目前常用的几种跟踪方法,通过对这几种常用控制方法的研究对比找出其运行中存在的优缺点,提出了基于模糊/PID双模态的MPPT跟踪方法。对光伏并网发电系统的孤岛检测问题进行了较为深入的理论分析和研究,提出基于周期性双向扰动正反馈有源频率漂移法的孤岛主动检测方法,以提高电力终端电网的安全性和供电的可靠性

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言