发布时间:2024-10-08 11:10:15 人气:
太阳能光伏发电系统是由太阳能电池,蓄电池,逆变器,控制器组成。我想知道这四样东西的主要作用都是什么
太阳能发电系统的结构和工作原理
太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。
1 太阳能发电原理
太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。
1.1 太阳能电源系统
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
(1) 电池单元:
由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。
理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。
(2) 电能储存单元:
太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。
1.2 控制器
控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。
1.3 DC-AC逆变器
逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流
电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照
明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。
2 太阳能发电系统的效率
在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。几种太阳能电池的转换效率见表1。
表1 几种太阳能电池的转换效率
实验室典型电池 商品薄膜电池
各种太阳能电池 ηmax(%) 各种太阳能电池 η(%)
单晶硅 24.4 多晶硅 16.6
多晶硅 18.6 铜铟镓硒 18.8
GaAs(单结) 25.7 碲化镉 16.0
a-si(单结) 13 铜铟硒 14.1
充分利用太阳能是绿色照明的重要内容之一。而真正意义上的绿色照明至少还包括:照明系统的高效率,高稳定性,高效节能的绿色光源等。
3.1 发电--建筑照明一体化
目前成功地把太阳能组件和建筑构件加以整合,如太阳能屋面(顶)、墙壁及门窗等,实现了"光伏--建筑照明一体化(BIPV)"。1997年6月,美国宣布了以总统命名的"太阳能百万屋顶计划",在2010年以前为100万座住宅实施太阳能发电系统。日本"新阳光计划"已在2000年以前将光伏建筑组件装机成本降到170~210日元/W,太阳能电池年产量达10MW,电池成本降到25~30日元/W。1999年5月14日,德国仅用一年两个月建成了全球首座零排放太阳能电池组件厂,完全用可再生能源提供电力,生产中不排放CO2。工厂的南墙面为约10m高的PV阵列玻璃幕墙,包括屋顶PV组件,整个工厂建筑装有575m2的太阳能电池组件,仅此可为该建筑提供三分之一以上的电能,其墙面和屋顶PV组件造型、色彩、建筑风格与建筑物的结合,与周围的自然环境的整合达到了十分完美的协调。该建筑另有约45kW容量,由以自然状态的菜子油作燃料的热电厂提供,经设计燃烧菜子油时产生的CO2与油菜生长所需的CO2基本平衡,是一座真正意义上的零排放工厂。BIPV还注重建筑装饰艺术方面的研究,在捷克由德国WIP公司和捷克合作,建成了世界第一面彩色PV幕墙。印度西孟加拉邦为一无电岛117家村民安装了12.5kW的BIPV。国内常州天合铝板幕墙制造有限公司研制成功一种"太阳房",把发电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所有用电由屋顶太阳能电池提供。这将有力地推动太阳能建筑节能产业化与市场化的进程。
3.2 绿色照明光源研究
绿色照明系统优化设计,要求低能耗下获得高的光效输出,并延长灯的使用寿命。因此DC-AC逆变器设计,应获得合理的灯丝预热时间和激励灯管的电压和电流波形。目前处在研究开发中的太阳能照明光源激励方式有四种典型电路:①自激推挽振荡电路,通过灯丝串联启辉器预热启动。该光源系统的主要参数是:输入电压DC=12V,输出光效>495Lm/支,灯管额定效率9W,有效寿命3200h,连续开启次数>1000次。②自激推挽振荡(简单式)电路,该光源系统的主要参数是:输入电压DC=12V,灯管功率9W,输出光效315Lm/支,连续启动次数>1500次。③自激单管振荡电路,灯丝串联继电器预热启动方式。④自激单管振荡(简单式)电路等方式的高效节能绿色光源。
4 结束语
绿色能源和可持续发展问题是本世纪人类面临的重大课题,开发新能源,对现有能源的充分合理利用已经得到各国政府的极大重视。太阳能发电作为一种取之不尽,用之不竭的清洁环保能源将得到前所未有的发展。随着太阳能产业化进程和技术开发的深化,它的效率、性价比将得到提高,它在包括BIPV在内的各个领域都将得到广泛的应用,也将极大地推动中国"绿色照明工程"的快速发展。
和谐号CRH1型电力动车组的分类
新一代CRH1A型动车组,是庞巴迪公司利用ZEFIRO高速列车平台设计的新一代高速动车组,其设计为8编组,定员613人。采用铝合金鼓型车体,最高速度250km/h。目前由青岛四方庞巴迪铁路运输设备有限公司(BST)生产。ZEFIRO高速列车平台,其理念是节能、大容量、可以满足个性化的舒适、仿生设计。该平台包括动力车和拖车,目前ZEFIRO平台设计出来的列车有三款,250km/h级别的是我国的CRH1E、新CRH1A(ZEFIRO 250NG)型动车组,300km/h级别的是意大利Frecciarossa 1000动车组,380km/h级别的是我国的CRH380D。新一代CRH1A型动车组,采用更为流线型的头型设计,同时由原来的不锈钢车体改为铝合金车体,改善了车体气密性。优化了转向架悬挂,提高了稳定性。全列定员613人。
2015年1月,新一代CRH1A-1169、1170两列动车组在秦沈客运专线进行动力学试验。2015年8月,新一代CRH1A-1169型动车组在沪昆高铁进行试验。
2016年2月1日,新一代CRH1A-1169型动车组正式在广珠城际铁路载客运行。 CRH1A型动车组的原型车是庞巴迪运输为瑞典国家铁路提供的Regina C2008型。2004年6月,铁道部展开为用于中国铁路第六次大提速、时速200公里级别的第一轮高速动车组技术引进招标,中外合资企业青岛四方-庞巴迪-鲍尔铁路运输设备有限公司(BSP)为中标厂商之一,获得了20列的订单。2004年10月12日,铁道部与BSP正式签订合同,合同编号790,铁道部代表签约方为广州铁路(集团)公司。2005年5月30日,广深铁路股份有限公司决定以25.83亿元人民币的价格向BST另外订购20列时速200公里级别动车组,以满足广深铁路第四线于2008年开通之后的运营需求;同年8月25日,广深铁路公司董事会通过有关议案。而BSP的40列时速200公里级别动车组其后最终被定型为CRH1A,动车编号为CRH1A-001A~CRH1-040A。
CRH1A采用交流传动及动力分布式,标称速度为200公里/小时,持续运营速度为200公里/小时,最大运营速度为250公里/小时,但实际运用中CRH1A的最大运营速度受动车组微机控制系统软件锁定(软件限速),初期最高运营速度为205公里/小时,至后期大部分均放宽至220公里/小时。列车编组方式是全列8节,包括5节动车及3节拖车(5M3T),其中包括2节一等座车,5节二等座车,1节二等座车/餐车。动车组轴重不大于16吨,牵引总功率5300千瓦,车体为不锈钢焊接结构。列车在2、7号车厢设有受电弓及附属装置,受电弓工作高度最低5.3米、最高6.5米。动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。车端连接装置采用德国系统的夏芬伯格式10号(英语:Scharfenberg Type 10、德语:Scharfenbergkupplung Typ 10)密接全自动车钩,内置机械、空气、电气连接机构和通路。头车两端采用半自动密接车钩,内有机械、空气连接机构和通路,带有车钩引导杆(Coupler alignment bar),容许两组动车重联运行。列车网络控制系统采用符合IEC 61375标准的TCN分布式智能网络系统,通过网络对列车及各设备实施控制、监视和诊断。
牵引及供电系统方面,CRH1型电力动车组采用交-直-交传动,即牵引电源经过单相定频交流电压→固定直流电压→三相变压变频交流电压的转换后,供应交流牵引电动机并驱动列车运行。首先,受电弓通过接触网接入25,000V(50Hz)的高压交流电,输送给牵引变压器,降压成单相902V(50 Hz)的交流电。降压后的交流电再输入整流器,2台并联的四象限脉冲整流器模块(LCM)将输入的交流电整流成两路1650V直流电,其中一路直流电再经2台IGBT牵引逆变器模块(MCM)逆变成电压和频率均可控制的三相交流电,输送给牵引电动机牵引列车。同时,另一路直流电输入辅助逆变器模块(ACM),同步将1650V直流电逆变成三相876V(50 Hz)交流电,输出至滤波箱的三相变压器,变压并输出三相400V(50 Hz)交流电源输出至列车上的用电设备。另外,牵引变流器在再生制动过程中,也负责将牵引电动机产生的电能反馈至电网上。动车组的牵引电动机采用了三相鼠笼异步交流电动机,架悬式安装在转向架上,冷却方式为强迫风冷,电动机控制方式为矢量控制。电动机通过联轴节链接驱动齿轮,最后带动轮对输出力矩。
CRH1A动车组全部由BSP在青岛的厂房组装生产。第一组列车(CRH1-001A)于2006年8月30日在青岛出厂,并在同年9月至12月间先后到北京环型铁路试验场、遂渝铁路、京沪铁路、胶济铁路、陇海铁路和广深铁路等地进行试验。2007年2月1日起,CRH1A动车组正式开始在广深线投入载客试运行,首发车次为T971次,由广州东站出发前往深圳站。最初生产的11组CRH1A(CRH1-001A~011A)的风笛是置于驾驶室挡风玻璃上方,在其后出厂的车辆(CRH1-012A~040A)则改至列车首尾两端的连结器整流罩两侧。而首批CRH1A型的最后一列(CRH1-040A)已于2009年3月7日出厂并交付上海铁路局。CRH1A又在2009年10月开始配属成都铁路局,运行重庆北-遂宁-成都的城际列车。
2010年7月,中国铁道部向BST追加订购40列CRH1A(CRH1-081A~CRH1-120A),订单总值7.61亿美元,折合约52亿元人民币,其中庞巴迪的份额为3.73亿美元。这批CRH1A增购车将于2010年9月开始交付,到2011年5月交付完毕。第二批CRH1A动车组在第一批的基础上作了少量改进,除了列车最大运营速度因取消了软件限速而达到时速250公里/小时,及对部分列车设备重新布置,最明显的差异是四号和五号车厢的座席布置。五号车厢由二等座车/餐车(ZEC)改为一等/二等座车(ZYE),采用一等包厢座席和二等座混合布置,二等座座席数量减少至61个,但新增了四个一等座包间共16个座席,其中2人包间和6人包间各两个,五号车厢总定员77人。而四号车厢则由二等座车改成二等座车/餐车。按铁道部统一计划,CRH1A增购车将供南昌铁路局、成都铁路局和广州铁路集团分配运用。
2012年9月,中国铁道部更改有关和谐号CRH380D型电力动车组的订单,在新订单中,铁道部将订购46列CRH1A及60列新一代CRH1 。新一代CRH1将使用铝合金车身以减轻重量、增强牵引系统、优化列车气密性及减少能源消耗。
由于CRH1主要用于城际运输,加上车体外观与地铁列车相似,而其原形车(Regina C2008)在国外都是以两节或三节短编组运行,所以中国国内铁路迷普遍将CRH1型动车组称为“地铁”。铁道迷对此型车有“大地铁”的昵称。列车通常运行沪宁、沪杭线的城际列车,其发车密度大约只有15分钟左右,犹如城市轨道交通线路;另外列车设计也酷似上海轨道交通6号线、8号线的AC10、AC12列车 。 BSP在2007年10月31日再获得铁道部40列16节编组动车组新订单,合同编号796。其中20列是在CRH1A基础上扩编至16节车厢的大编组座车高速列车,称为CRH1B,编号为CRH1-041B~CRH1-060B。全列16节编组中包括10节动车配6节拖车(10M6T),其中包括3节一等座车,12节二等座车,1节餐车。最高运营速度为200—250km/h,而车体外观不变。2009年3月5日,第一列CRH1B型动车组完成了BSP公司内部的环形线测试,3月8日开始在北京环行铁道试验。CRH1B动车组在2009年4月起配属上海铁路局,运行上海—南京、上海南—杭州的城际列车。整批20列CRH1B动车组在2010年4月交付完毕。2011年发生的动车组列车追尾事故中,D3115车次的列车就是这种型号。
2012年10月,原本属于第16列至第20列的CRH1E,按铁道部要求以原有CRH1E的头型制造成大编组的CRH1B,令到CRH1B总数增至25列。
而2007年10月31日签订的合同中另外20列动车组(CRH1-061E~CRH1-080E)以庞巴迪新研发的ZEFIRO 250系列为基础,为16节车厢的大编组卧铺动车组,每组包括10节动车配6节拖车(10M6T),最高运营速度为250公里/小时,成为世界上第一种能达到250公里/小时的高速卧铺动车组。列车所使用的庞巴迪MITRAC牵引系统由庞巴迪CPC牵引系统公司(庞巴迪在常州设立的中外合资公司)和庞巴迪在欧洲的工厂生产[5]。首12列CRH1E型动车组编组中有1节豪华软卧车(WG)、12节软卧车(WR)、2节二等座车(ZE)和1节餐车(CA),全列定员618人。其中位于10号车厢的高级软卧车每车定员16人,设8个包厢,每个包厢2个铺位,每个包厢中均有沙发和衣柜,但没有独立卫生间,车厢一端设有带转角式沙发的休息室。但由第13列动车组(CRH1-073E)起取消了高级软卧车,并以软卧车代替,全列定员增加至642人。
2009年10月,首列CRH1E型动车组出厂,并配属上海铁路局。2009年11月4日,CRH1E开始上线运营,担当来往北京、上海的D313/314次动车组列车。CRH1E实际交付15列(CRH1-061E~CRH1-075E),第15列于2010年8月交付 。
常州天合光伏太阳能用的什么牌子逆变器
常州天合光伏是一家专业生产光伏电池板的上市企业。如果你是想问他们产业园的光伏项目用的什么逆变器,好像是华为逆变器。如果你想买逆变器可以参考16年的逆变器销售排行榜
双玻组件_双玻组件数据
双玻组件数据
这个项目可能也是不是特别好说,这是哪个公司的项目,这是一个非常严谨实测数据,这个数据在双玻和普通组件同样用的是科士达逆变器和阳光逆变器情况下,拿到的一年以后实测发电量,得出的结论是什么 双玻组件发电量不管是在集中式还是组串式逆变器下,双玻组件发电分别高出2.86%和2.94%,这是到现在为止我们认为监控几百兆瓦里有规模有同等比较的条件,有说服力的数据。这点也是我们最近收集起来的资料,一年以后温度的差异,热斑对组件造成的影响,双玻明显小很多,这方面也比较容易理解,难免会因为各种各样的原因组件出现热斑。双玻组件有更好的导热性、传导性,即便温度相对集中的地方也更容易分散,即便在双玻组件中出现热斑的影响,比较起来真正对组件造成的影响,双玻要小一点。我个人觉得有影响,但不是特别的突出,我也是非常客观的看。
最后一点,这点应该是在今天或者明天的论坛还有别的一些企业也会提到,我个人认为1500V 组件系统可能在明年将有非常高速的发展,我们前几天看到了一个国家通知,补贴要下调,我们初步估计一类地区降5分,我们要想达到同等的收益,可能我们系统的成本要降低4.5到5.5元,一般我们说0.4元。从我们组件端来说,每年几乎可以在不增加成本基础上依靠转化率的提高,每年提高5瓦或者每年提高2%到3%的转化效率,今年我们在市面上买到的组件是255、260。第二方面依靠于设计工艺上。第三电气方面的下降,像阳光不断推出大功率的逆变器。1500V 系统,大家最简单的理解,汇流箱少了三分之一,电线电缆少了三分之一,逆变器容量增大了,单瓦成本也会下降。还有变压器也少了三分之一,运维和成本也减少了。我个人蛮自豪的说,我们是今年第一个在这个行业呼吁里1500V 的人。1500V 难在什么地方,因为是系统工程,不是阳光能做出1500V 逆变器就可以了,中间还有一个挑战,中国至今还没有光伏1500V 的设计标准,我们走访了很多设计院,我们可以借鉴直流端的煤矿行业等,应该说我们走访下来,包括电线电缆,所有工艺都已经齐备。美国最开始做1500V ,后面印度,像中国技术升级很大程度上也应该积极去推进,去摸索。我认为在明年整个光伏行业都应该高度重视1500V 的发展。1500V 对于组件的挑战,原来是背板的问题,不管是双玻还是1500V 在明年可能会立竿见影减轻我们的成本。比如1500V 就能降0.2元,我们说转化效率的提升又能降5分,别的地方我们在设计方面等等方面,再能降0.15、0.2元,包括其他设备费用的下降,我觉得还是比较乐观。只有不断地创新,不断地通过技术进步,才能真正拉低我们的成本。
这是在2014年天合做的海南双玻项目,主要考虑的是高温高湿。这是西双版纳50兆瓦的双格项目,都是茶园,这个项目主要考虑的昼夜温差非常大,对背板挑战非常大。这个项目考虑比较多,业主方提出抗风的要求,因为普通组件在屋顶上曾经出现过台风对组件的破坏。这是河南信阳7.6兆瓦的双玻项目,宿迁60兆瓦项目,印度200千瓦的项目,印度对双玻项目非常重视,集中大的项目还没有,最大的可能也就10兆瓦左右,基本我们合作的所有公司都在小规模用双玻来观察一些数据。
我们说双玻组件的优势,概括起来是三个,所有的优势来自于结构的三个方面,没有边框,没有背板,还有三明治结构,它的好处也来自于三个方面,更多收益,更可靠,更环保。总体来看,我觉得双玻组件会有更少的一些衰减,带来更多的收益,不管是抗风沙还是抗PID 还是抗氨气有更好的稳定性,在价格方面,双玻组件和普通组件几乎是一个价格,从天合来讲,我们把双玻组件作为普通组件的一种替代品。光伏行业不断要求降本增效,不断要求和传统火电竞争的背景下,我希望全行业携起手来,我觉得我们真正的对手不是行业内的厂家,我们真正的对手是传统的化石能源。“成本不高,更环保”,这才是我们光伏人扬眉吐气,真正过好日子的那一天,谢谢大家。
图:天合光能有限公司销售总监曾义发表主题演讲《双玻组件如何提高电站收益率》 曾义:各位来宾,各位光伏界的同仁,大家下午好。我在来的路上想了想,今年是我第六次讲双玻的话题,一方面我也怕各位听的烦,第二方面我每次都要竭尽所能把个话题更加详尽的想清楚。天合今年花了这么多功夫在双玻组件的推广,除了看到双玻组件在耐用性、衰减方面的贡献,我们整个光伏界所有同仁应该都看到一点,我们光伏真正的未来,真正的飞越还是有一天能够平价上网。我们畅想一下到2025年,光伏行业必须和火电成本相媲美,这才是我们真正光伏行业发展真正能够飞跃的时机。我一直认为光伏行业整个行业必须有最
大的勇气和热情拥抱挑战和创新,不断创新是我们这个行业最大的源动力。我们整个光伏行业应该要有更多的勇气去接受去尝试去探索新的产品新的工艺。
今天第七次和行业内同仁分享我们对双玻的一些认识。这张图是新的,不管讲到什么产品,我们都要首先看一下产品的发展渊源,双玻我个人认为不是真正的新产品,可能从光伏组件在中国应用开始,双玻组件就开始出现了。第一个阶段双玻组件主要用月BIPV 和BAPV ,第二个阶段主要是功能上的应用,比如像青岛昌盛在双玻产品应用方面,第三个阶段从2014年开始进入大规模的应用,我们从2014年开始,海南中电有一个20兆瓦的双玻大型地面电站。当时的考虑在2014年开始更多是看到了双玻组件在高温高湿及PID 方面的一些功能。我相信从2016年开始,双玻另外一方面的功效,比如1500V 系统应用,在电压方面有更好的表现。双玻组件应用多样性,主要是抗水汽、抗盐雾,第二方面在西北抗紫外线抗封杀,第三方面是农业光伏方面,华中地区农业项目像抗水汽,调光保温,还有像欧洲抗氨气。第四方面是屋顶光伏,这方面应用的项目比较少,但逐步大家也意识到在清洗运维方面的优势。
说到双玻的可靠性,这个地方我稍微打乱一下,我觉得双玻组件不同于别的组件,一个没有背板,第二没有边框,普通组件背板都是自然界老化因子,包括高温高湿都对背板有影响,但是不能说背板不能达到25年的使用条件,从双玻来说,大家对玻璃很容易理解,一般的只要不是强碱,基本没有影响。从组件构造方面,可以非常明显的看到这点。在接下来
的报告加上我们实际应用一、二、六年以后的数据和实测的数据和大家分享,更能够帮助大家进一步的去认识双玻的一些特点。普通组件要接地,双玻在这方面很大一个好处不用接地,施工起来成本也会便宜1到2分钱。我们把双玻表面覆盖导电的铝箔膜在上面,再做热循环,做了以后同样看PID 成果,大家可以一目了然,上面的常规组件做了600个小时实验以后,明显的变黑,双玻组件在600个小时以后,即使加上表面导电的铝箔以后,我们可以看到稍微有一两个电池发黑,这是明显的差异。这是耐风沙打磨性能,在沙尘较大的地区,如果使用普通组件,其背板的最外层会受到磨损,影响外观及性能,因此,将双玻和普通组件进行耐磨损的相关实验验证。
闪电纹和蜗牛纹,到现在为止我们天合还没有发现蜗牛纹、闪电纹会直接加速组件的衰减,但是看起来很不爽。它们的成因是两方面,一个是隐裂,一个是水透。双玻还有一个优势,没有边框,可以看到不积灰不积雪,易清洗管理,减少运维费用。大家知道电磁板所有电池都是串联的,一块的阻挡就会导致整个组件发电量的减少,而减少是非常明显的。双玻组件因为没有边框的遮挡,灰尘都很容易被冲下去。特别是在西北地区,下雪以后,我们在天合常州实验室做了一个实验,这边双玻组件沉积1.5米以后,雪自然坍塌。这部分是讲双玻抗隐裂性能,双玻强度相同,结构相同,厚度相同的玻璃,应力分散方面非常的均匀。我们说三明治结构,对于减少应力,减少风载雪载的能力有明显提高。这张图是我们做了一个实验,薄膜组件、普通组件和双玻组件,在支架沉降15厘米以后,一个光照的情况,在14天以后的对比,薄膜组件出现破损,可能和薄膜组件本身结构有关系,我们双玻组件和普通
组件基本是3厘米左右,普通组件有4、5厘米的边框,双玻组件是5
毫米的结构,它的稳定性,普通组件在位于150毫米以后,明显出现外力性隐裂现象,双玻组件几乎不会出现,理论是什么 我们就专门双玻组件和普通组件在1500帕变形情况下,它的应力分析。我们最左边的图是普通组件,同样的5400帕可以发现在组件中间部位发生了变形,而双玻组件最强的部分虽然集中在中间,但是是横向分散的,所以同样在4500帕雪载下面,双玻组件中间点最大形变只有1.6厘米。我们也知道变形越少,其中可能产生隐裂的风险就会越少
最近广东台风可能引起了大家对屋顶项目支架的抗风能力或者牢固性的关注,我觉得这个关注都只看到了台风对组件显性的影响,我们测过海南的项目,应该是14级台风,某些点风力略微大于14级,即使支架没有变形,但是隐裂变化已经非常严重。我们行业还没有达到最终解决方案的那一天,问题不断有,靠的就是所有光伏界供应商、设计单位、研发单位共同一个一个克服问题,可能双玻是在某一个方面的解决方案。这是我们天合内部做的一个机械载荷实验,我们可以看到左边的图,这个变形已经达到了12厘米,中间吸盘拉手一直在动,想模拟在强台风过程中不断震颤对组件的影响,双玻组件检测前和检测后,在12厘米相对于每小时140公里风速下持续的颤动,没有发现一片隐裂的出现。双玻还有一个优势,阻燃的效果,双玻组件可以达到Class A,现在我们分布式和屋顶式都越来越多,不能说有一些组件不安全,但是每隔一两年可以在全球报告中看到光伏电站火灾的一些影响,美国计划明年要推出所有居民屋顶上的组件,要达到Class A放火等级,我们中国要求还没有这么高,但是也不能说普通组件有这么大的危害性,但是双玻组件在这方面表现的更好一些。
这是在可靠性方面的一些实验数据,今天的PPT 更多注重实证数据方面的影响,以前大家对双玻组件没有那么多的认识,更多是感性定性的报告,今天分享更多的是数据方面的东西。
我们对14片组件进行可靠性实验,把所有IEC 标准提高了3倍,不管是热循环、冷热,所有的都做过实验,最大的衰减6%。这是第三方测试的情况,高于IEC 国际标准3倍条件的测试。双玻能够更好地起到密封的作用,阻水的作用,抗风沙的作用,它的衰减就要明显低于普通组件。在中国天合销售出去的双玻组件已经达到了300兆瓦,我们一直在跟踪,一两年之前为什么没有那么多数据拿出来,我们觉得真正的实测数据才能代表双玻组件的表现。从我们真正验证实测数据来看,比我们现在承诺每年衰减0.5%还要更加乐观。
我们还有一个观点,包括一些金融机构,在评估我们电站的时候,还提了一个新的说法,叫表外收益,可能不是非常的普遍,我们现在的财务分析,指的是20年有补贴,在很多地方如果电站长期存在,即便低于80%转化效率还可以发电有收益,没有国家的4.2元补贴,但是同等于脱硫煤电价的存在。
常州市那里有修逆变器的地方
常州市有修逆变器的地方在常州凌肯自动化科技有限公司。根据查询相关资料信息逆变器是把直流电转变成交流电的转换器,常州凌肯自动化科技有限公司位于江苏省常州市武进经济开发区政大路1号力达工业园4楼,专业从事维修:变频器、伺服驱动器、数控系统、触摸屏,直流调速器、软起动器及各种精密电气设备的专业化。
常州天合光伏太阳能用的什么牌子逆变器家用
常州天合光伏是一家专业生产光伏电池板的上市企业。如果你是想问他们产业园的光伏项目用的什么逆变器,好像是华为逆变器。如果你想买逆变器可以参考16年的逆变器销售排行榜
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467