发布时间:2024-10-08 10:40:13 人气:
500kw,3kw(大小功率)光伏逆变器直流侧并接的薄膜电容或电解电容容值分别怎么计算
一般情况电容的主要用途是滤波用的,I=C*du/dt,需要知道平均电流 然后通过纹波在单位时间里的变化量确认。基本上思路是这样子的。有些设计电容的时候又考虑到使用的寿命所以这是第二条思路,综合一下就好了。
SVPWM做出来的电流波形为什么是这样,不正弦?
从波形上看,三次谐波过高。
由于你没有描述具体电路结构及控制方法,很难说问题的原因。
如果该电流是PFC 电路的输入电流或者是并网逆变器的输出电流,出现三次谐波的主要原因:
1,电压环的误差放大器对直流母线电压(或DC-Link电压)上的100Hz纹波(对于50Hz电网)没有足够衰减而作为电流环的给定,会导致输出电流有很高的3次谐波。
2,若有输入电压前馈,前馈电压也含有100Hz纹波,若处理不合适也会造成很大的3次谐波。
3,若电网电压本身含有3次谐波,也会造成电流有3次谐波。
另外,SVPWM的调制的等效参考波即为注入3次谐波的正弦波(零序),在相电压中必然含有3次谐波;但是线电压中零序分量会抵消掉,所以不含3次谐波。
滤波电感的滤波电感的设计
在全桥逆变器中,输出滤波电感是一个关键性的元件,并网系要要求在逆变器的输出侧实现功率因数为1,波形为正弦波,输出电流与网压频率相同。因而,电感值选取的合适与否直接影响电路的工作性能。对电感值的选取,可以从以下两个方面来考虑:①
电流的波纹系数
输出滤波电感的值直接影响着输出纹波的大小,由电感的基本伏安关系可得:
(5-14)
其中电感两端电压,考虑到当输出电压处于峰值附近,即时,输出电流波纹最大,设此时开关周期为T,占空比为D,则有下式:
(5-15)
另外,根据电感的伏秒平衡原理,我们可以得到,
(5-16)
于是求得,
(5-17)
从(5-15)、(5-16)式可得,
(5-18)
在本系统中,开关管的工作频率取电流波纹系数则由式(5-18)计算可:
因此,要保证实际电流纹则滤波器电感满足。
②从逆变器的矢量三角形关系可知,
(5-19)
于是,它们的基波幅值满足下式
(5-20)
由正弦脉宽调制理论可知,
(5-21)
其中,为调制比,且从而:
(5-22)
于是,我们可以得到下式:
综上,滤波电感的取值范围为。在实际设计过程中,由于电感的体积、成本等因素的影响,一般只需考虑电感的下限值,即取稍大于下下至即可。另外需要特别指出的是,以上的计算是建立在额定输出电压,即的基础上,考虑到实际情况下网压的波动范围,在设计电感时最终选取电感值,电感的额定电流为。
1.输入电容的设计
假设电网电压和电网的电流只含有基波分量并且相同,则注入到电网的瞬时功率为:
(5-24)
其中是注入电网的平均功率,是角频率,是时间。
因此,中间直流侧电压有小的脉动,同时由前述的Boost的光伏阵列的输出电流是在直流之上叠加了一个高频分量。同时雷击等尖峰电压和一些额外的因素引起的波动会对逆变器造成影响。因此有必要设置输入电容,使其与光伏阵列与逆变器之间的导线上的分布电感组成一个低通滤波,使各部分产生的干扰尽量不影响另一部分。
由经验值可得:输入电容的值一般取。
考虑到耐压,我们选取2个的电解电容进行串联。由于电容的串联涉及到均压的问题,采用并联均压电阻的措施。采用每组并联的电容上并联一个电阻,由三个电阻串联组成。
5.3.3功率因数(PF)
当逆变器的输出大于其额定输出的20%,平均功率因数应不小于0.85(超前或滞后),当逆变器的输出大于其额定输出的50%,平均功率因数不应小于0.95(超前或滞后)。
一段时期内的平均功率因数(PF)公式:
………………………………………(5)
式中:
——有功功率;
———无功功率。
注1:在供电机构许可下,特殊设计以提供无功功率补偿的逆变器可超出此限制工作;
注2:用于并网运行而设计的大多数逆变器功率因数接近1。
5.3.5工作频率
逆变器并网时应与电网同步运行。逆变器交流输出端频率的允许偏差为电网额定频率为。
5.3.6直流分量
并网运行时,逆变器向电网馈送的直流电流分量应不超过其输出电流额定值的0.5%或5mA,应取二者中较大值。
5.4.2发射要求
在居住、商业和轻工业环境中正常工作的逆变器的电磁发射应不超过GB 17799.3规定的发射限制;
连接到工业电网和在工业环境中正常工作的逆变器的电磁发射不应超过GB 17799.3规定的发射限制。
2.3太阳电池阵列输出功率数学模型
本文采用TRW太阳电池阵列输出功率数学模型[3,4]。任意太阳辐射强度和环境温度条件下,太阳电池温度
为
(21)
设在参考条件下,为短路电流;为开路电压;、为最大功率点电流和电压,则当光伏阵列电压为,其对应点电流为:
(22)
(23)
(24)
考虑太阳辐射变化和温度的影响时,
(25)
(26)
(27)
(28)
其中,、分别为太阳辐射和光电池温度参考值,一般分别取为和; 为在参考日照下的电流变化温度系数(); 为在参考日照下的电压变化温度系数();为光伏阵列的串联电阻。
2.4逆变器输出功率数学模型
逆变器输出功率为
(29)
其中,为输出功率;为输入功率;为无载功率;为额定输出功率;为常数,表明输入与输出间的关系,由下式决定
(30)
其中,为逆变器的效率。
有源电力滤波器的三电平
二极管箝位三电平拓扑由日本学者Nabae. A 等人在1980 年提出,经过近30年的发展,广泛应用于电力电子技术的各个领域。二极管箝位三电平拓扑的优势在于,各个开关管承受的反向电压为直流母线电压的一半,可以用较低电压等级的开关管,组成较高电压等级的变流器。已经广泛应用于4.2kV电动机传动系统。通常三电平技术一般应用于电压较高、功率较大的系统中,正是由功率器件耐压有限与变流器系统需求电压较高的矛盾现实决定的。但是我们应该看到二极管箝位三电平拓扑本身固有的一些优势。 (1) 用电压等级较低的开关管构成电压等级较高的变流器,随着功率器件技术的不断发展,市场上已经有6500V的IGBT出售,但是耐压越高的IGBT其开关损耗越高,最高开关频率也变得比较低。3300V以上的IGBT开关频率最高不会超过5kHz,1200V的IGBT的开关损耗远大于600V的IGBT。采用低压IGBT的三电平变流器的开关损耗远低于同样电压等级采用高压IGBT的两电平变流器,同时前者可以达到的开关频率也高于后者。(2) 能够输出三种电平。二极管箝位三电平变流器能够输出正母线电压、负母线电压以及零电压(简称P、N、O),一般情况下输出电压在P-O、O-N之间跳变,特殊情况下会出现P-N跳变,而两电平变流器只能在P-N之间跳变。也就是说三电平的电压跳变幅度为直流母线电压的一半,而两电平的为直流母线电压。高的电压跳变幅度对并网逆变器或有源电力滤波器带来的是较高的纹波电流,为了抑制纹波电流,需要较大的输出电感和滤波电容,由此带来了较高的纹波电流损耗。同时由于输出滤波电感电容也降低了电流响应速度,或对输出电流的能力产生了一定的限制。对于变频器带来的则是对电机的冲击以及较大的轴电流,严重影响着电机的寿命。另外,较高的电压跳变幅度也会产生严重的电磁干扰,对周边电子设备产生严重危害。而三电平以其固有的优势,在很大程度上解决了上述问题。
随着技术的不断发展,三电平技术被越来越多的人所重视,同时也将其从中压大功率领域,引入到400V的低压小功率应用之中,各个国际知名功率器件厂家推出了大量适应于400V系统应用的集成二极管箝位三电平功率模块,并有逐渐取代传统两电平变流器的趋势。应用于400V领域的成功的三电平产品如下:
(1)2008年日本安川电机推出了Varispeed G7系列通用矢量变频器,其400V产品采用三菱的三电平功率模块,并在应用中取得了巨大成功。
(2)2009年德州和能工业自动化有限公司在自主开发的三电平变流器控制技术的基础上,推出了HEINV系列三电平光伏并网逆变器,前端采用对称BOOST进行最大功率点跟踪,逆变器采用二极管箝位三电平拓扑,两者相互配合,采用Semikron的三电平功率模块,各项指标均优于同类两电平产品。
(3)2006年上海交通大学与上海信元瑞电气有限公司(当时的上海飞平电子有限公司)合作推出了国内唯一一个以能量算法为基础的有源电力滤波器(APF)NEWSINE系列产品,大大的提高了系统的稳定性,随着此后该产品在我国137个大型项目中的实际应用情况反馈,证明和标志了中国FACTS技术已经达到了国际领先水平。 将二极管箝位三电平技术应用于有源电力滤波器领域,国内外很多文献都有涉及,国内外许多专家学者对此都进行了比较深入的研究,也提出了很多新的算法。但是,三电平有源电力滤波器始终没有从实验室走向市场。究其原因,有可能是技术不够成熟,控制算法过于复杂,应用成本高,也可能是企业界对此不够重视,尚未认识到该技术的优势。德州和能工业自动化有限公司通过对三电平技术的深入研究以及对市场趋势的正确把握,在业界首先推出了三电平有源电力滤波器产品。
三电平有源电力滤波器与传统两电平有源电力滤波器相比有以下优势: SPA3系列有源电力滤波器
性能描述
可同时滤除2次到60次谐波
40μs内响应负荷变化,全响应时间小于10ms(1/2周波)
单相动态补偿,不受系统不平衡的影响
3.8 英寸QVGA显示屏,
MODBUS 通讯接口有源电力滤波器
采用速度高达20KHz的IGBT,完美消除谐波
并联安装方式,安装简单、方便,易于扩展,最多可10台并联
优势
SPA3是谐波治理的完美解决方案
动态电流补偿消除谐波和提高功率因数
减少谐波在电缆、开关、变压器中的发热
减少谐波引起的停电故障和时间
提高电源利用率减少运营成本
应用范围
SPA3适用于工业负载场合
SPA4系列有源电力滤波器
性能描述
有效消除因零序谐波产生的中性线电流
可以同时滤除2~25次范围内的全部或选定次数的谐波
单相动态补偿,不受系统不平衡的影响
并联安装方式,安装简单、方便,易于扩展,最多可4台并联
设计选型简单,不需要进行详细的电网分析,只需测量谐波电流的大小
体积轻巧,可壁挂安装
标准的通讯接口,方便的接入用户现有的通讯系统
优势
SPA4系列是谐波治理的完美解决方案
动态电流补偿消除谐波和提高功率因数
减少谐波在电缆、开关、变压器中的发热
减少谐波引起的停电故障和时间
提高电源利用率减少运营成本
应用范围
三相四线适用于商业建筑负载场合 (1)低纹波电流,高电流响应速度
纹波电流和电流响应速度是矛盾的两个指标。作为有源电力滤波器,其基本原理是检测负载谐波,注入反相谐波,以谐波的相互抵消达到滤波的目的。一般的有源电力滤波器是一个电流模式控制的电压源逆变器。输出电流是通过逆变器输出的电压作用在输出电感上产生的。逆变器采用脉冲宽度调制,根据电工的基本原理,纹波电流决定于开关频率、直流母线电压、输出电感的大小,与电流环的控制无关。开关频率越高纹波电流越小、直流母线电压越高,纹波电流越大;输出电感越大,纹波电流越小。而逆变器期望的输出电流是由电流环所控制。有源电力滤波器输出谐波电流,如果按基波50Hz,补偿50次谐波计算,最高谐波频率将达到2.5kHz。有源电力滤波器对电流响应速度有很高的要求。电流响应速度与直流母线电压和输出电感大小有关。直流母线电压越高,电流响应越快;输出电感越大,电流响应越慢。我们期望输出纹波电流越小越好,电流响应速度越快越好,这是一对矛盾。从上述分析可以看出,两电平有源电力滤波器解决这个矛盾的办法只能是提高开关。在某些厂家的两电平有源电力滤波器产品的开关频率已经达到20kHz。但是,开关频率的提高带来的是更高的开关损耗以及驱动损耗,有源电力滤波器的单机容量会受到限制,而对于更高电压等级的有源电力滤波器,高压的IGBT根本就不允许那么高的开关频率。然而,三电平有源电力滤波器从原理上就是一个解决上述问题的方案。三电平逆变器可以输出正、负、零三种电压,在计算纹波电流时,只需按直流母线电压的一半计算。由此,在相同开关频率、相同直流母线电压、相同纹波电流要求的前提下,三电平的输出电感为两电平的一半,同时器件的开关损耗和电感上的纹波损耗也会降低。在计算电流响应速度时,起作用的将是全部直流母线电压,而输出电感的减半,将加快电流的响应速度,增强滤波效果,提高单机容量。
(2)提高系统耐压,应用于较高电压系统
通常国内低压电网为400V,但是对于某些行业,其低压电网会比较高,例如石油钻机传动采用的是600V,矿山用电可能是690V或1140V,而某些行业的电压等级可能更加多样,但一般都是500V以上。如何解决这些行业谐波治理需求,是一个问题。通常为了提高电流响应速度、保证补偿效果,处理谐波的有源电力滤波器比处理基波的变频器或并网逆变器需要更高的直流母线电压。通常两电平逆变器的直流母线电压是交流电网电压有效值的2倍。对于380V应用,直流母线电压一般在700V~750V,而对于600V,直流母线电压需要达到1200V。很多企业的做法是加一个变压器,将其他等级的电压变为400V。通过谐波的变压器是经过特殊设计的,价格比较高,体积也比较大,变压的损耗也会比较大。而采用三电平技术,可以用耐压较低的管子组成耐压较高的变流器系统,可以直接连接到电压较高的电网上,同时保证较好滤波效果和单机容量。
ups蓄电池纹波电流影响使用吗?
为了延长ups蓄电池寿命,
应让电池总保持在“浮”充电或恒压充状态。这种状态下电状态,充满电的电池会吸收很小的充电器电流,它称为“浮”或“自放电”电流。尽管电池厂商如此推荐,有些UPS的设计(很多在线式)
使电池承受一些额外的小电流,称为纹波电流。纹波电流是当电池连续地向逆变器供电时产生的,因为据能量守恒原理,逆变器必须有输入直流电才能产生交流输出。这样电池形成了小充放电周期,充放电电流的频率是UPS输出频率(50或60Hz)的两倍。
普通后备式、在线互动式或后备/铁磁式UPS不会有纹波电流,其它设计的UPS会产生大小不等的纹波电流,这取决于具体的设计方法。只要检查一下UPS的结构图就能知道该UPS能否产生纹波电流。
如果在线式UPS的电池在充电器和逆变器之间,那么电池就会有纹波电流,这是普通的“双变换”UPS。
如果用截止二极管、继电器、变换器或整流器把ups蓄电池与逆变器隔离开,那么电池就不会有纹波电流。当然这种设计的UPS不总是一直“在线”,所以这种UPS被称为“混合后备/在线式”UPS。
详细的解说你可以看下这个网站www
ups138
com上面写的很详细
功率模块逆变整流电流方向
本实用新型涉及一种功率转换装置,尤其涉及一种用于逆变器的功率模块装置及所述逆变器。
背景技术:
2.功率模块装置是储能逆变器或者光伏逆变器中的核心部分,用于实现电流的双向逆变,即电流从直流转变为交流或者从交流转变为直流,其中,所述功率模块装置中必不可少的电子元件或零件包括若干个滤波电容及机架等。
3.目前已有的功率模块装置的结构设计中,若干个所述滤波电容一般是固定于所述机架内,进而容易造成所述机架中的风道堵塞;再者,若干个所述滤波电容的布局方式一般是以某一方向错开分布,使得所述功率模块装置的整体尺寸比较大,难以满足一些对所述功率模块装置有特定尺寸要求的使用场合。
技术实现要素:
4.为使功率模块装置中滤波电容布局的位置及布局的方式更合理,进而使得所述功率模块装置的机架内部风道通畅,以及所述功率模块装置的整体尺寸更小巧以适用于不同的使用场合,本实用新型实施例提供一种功率模块装置。
5.本实用新型实施例提供的功率模块装置包括滤波电容组、机架及滤波电容支架,其中,所述滤波电容支架包括第一侧和第二侧,所述滤波电容支架的所述第一侧固定于所述机架的外表面上,同时所述滤波电容支架的所述第二侧用于固定所述滤波电容组;所述滤波电容组包括第一数量个滤波电容,所述第一数量个所述滤波电容以矩阵形式排列且所有所述滤波电容的引脚朝同一方向排列,所有所述滤波电容的背离所述引脚的一端均固定在所述滤波电容支架的所述第二侧上。
6.本实用新型实施例提供的所述功率模块装置,由于所有所述滤波电容均固定在所述滤波电容支架的所述第二侧上,且所述滤波电容支架固定于所述机架的外表面上,因此,使得所有所述滤波电容都设置于机架的外侧,有利于所述机架中的风道通畅。此外,由于所有所述滤波电容以矩阵形式排列且所有所述滤波电容的引脚朝同一方向排列,因而有利于缩小所述功率模块装置的整体尺寸。
附图说明
7.为了更清楚地说明本实用新型实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
8.图1为转换电路模块的电路模块示意图;
9.图2为本实用新型一实施例提供的功率模块装置的第一种部分结构示意图;
10.图3为本实用新型一实施例提供的功率模块装置的第二种部分结构示意图;
11.图4为本实用新型一实施例提供的功率模块装置的第三种部分结构示意图;
12.图5为本实用新型一实施例提供的功率模块装置的第四种部分结构示意图;
13.图6为本实用新型一实施例提供的功率模块装置的第五种部分结构示意图;
14.图7为本实用新型一实施例提供的功率模块装置的第六种部分结构示意图;
15.图8为本实用新型一实施例提供的功率模块装置的第七种部分结构示意图;
16.图9为本实用新型一实施例提供的功率模块装置的结构示意图。
具体实施方式
17.为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
18.应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
19.还应当理解,在本实用新型说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
20.本实用新型实施例提供的功率模块装置应用于单向逆变器或双向逆变器中。所述单向逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(一般为220v,50hz正弦波)的转换器,所述单向逆变器一般包括所述功率模块装置、直流电能供给(电池、蓄电瓶)、散热风扇等,其中所述功率模块装置是所述单向逆变器最核心的一部分,用于将直流电能转变成定频定压或调频调压交流电。
21.所述双向逆变器可以是储能逆变器、光伏逆变器等。所述双向逆变器不仅可以把直流电能转变成交流电,还可以把交流电转变成直流电能,所述双向逆变器一般也包括所述功率模块装置、直流电能(电池、蓄电瓶)、散热风扇等,其中所述功率模块装置是所述逆变器最核心的一部分,用于将直流电能转变成交流电或者将交流电转变成直流电能。所述逆变器和所述双向逆变器主要的不同在于所述功率模块装置不同且所述功率模块装置实现的功能不同。即,所述逆变器和双向逆变器的区别在于,所述逆变器为只能实现电流单向转变即直流转交流的转换器,所述双向逆变器为能实现电流双向转变即直流转交流或交流转直流的转换器。
22.一般来说,不管是所述单向逆变器的功率模块装置还是所述双向逆变器的功率模块装置,所述功率模块装置除了都包括转换电路模块以外,还包括机架等其他零件。所述转换电路模块是所述功率模块装置中最核心的一部分,在所述单向逆变器中,所述转换电路模块用于将直流电能转变成定频定压或调频调压交流电;在所述双向逆变器中,所述转换电路模块用于将直流电能转变成交流电或者将交流电转变成直流电能;所述机架等其他零件用于支撑所述转换电路模块中的各电子元器件。
23.显然,所述双向逆变器可以实现所述单向逆变器的功能,为方便说明,以下关于所述转换电路模块的说明是以所述转换电路模块可应用于所述双向逆变器中为例进行的说明。
24.请参阅图1,图1为转换电路模块的电路模块示意图:
25.所述转换电路模块100为主要由转换电路模块101、滤波电路模块102等构成的能够实现电流逆变的电路模块。所述转换电路模块101包括正极端、负极端以及交流端,所述滤波电路模块102连接于所述转换电路模块101的正极端和负极端之间,所述转换电路模块101的交流端用于输出三相交流电l1、l2、l3,所述转换电路模块101的正极端和负极端并分别与一直流正极接线端a和一直流负极接线端b连接,所述滤波电路模块102并连接于所述直流正极接线端a和所述直流负极接线端b之间。
26.所述转换电路模块100包括两种模式:直流转交流模式、交流转直流模式。当所述转换电路模块100处于所述直流转交流模式时,从所述直流正极接线端和所述直流负极接线端接入的直流电经过所述滤波电路模块102滤波后,通过所述转换电路模块101的正极端和负极端进入到转换电路模块101中进行逆变得到交流电,所述交流电再通过所述转换电路模块101的交流端输出,进而实现直流电到交流电的转换。其中所述滤波电路模块102的作用是滤波,具体在于滤除所述接入的直流电中不必要的电信号;所述转换电路模块101的作用是逆变,具体在于将输入到所述转换电路模块101的直流电逆变成交流电。
27.当所述转换电路模块100处于所述交流转直流模式时,待要转直流的交流电通过所述转换电路模块101的交流端进入到所述转换电路模块101中进行整流得到初始直流电,由于所述初始直流电为所含交流纹波很大的脉动直流,不能直接用作电子电路的直流电,因此所述初始直流电还需通过所述滤波电路模块102进行滤波,以大大降低交流纹波成份,使输出的直流电波形更加平滑,经过所述滤波电路模块102滤波后的直流电通过所述直流正极接线端和所述直流负极接线端输出至相应的负载电路中,进而实现交流电到直流电的转换。其中所述转换电路模块101的作用是整流,具体在于将输入到所述转换电路模块101的交流电整流成初始直流电;由于经所述转换电路模块101整流得到的所述初始直流电所含交流纹波很大,因此所述滤波电路模块102的作用是滤波,具体在于降低所述初始直流电中的交流纹波成份,使输出的直流电波形更加平滑。
28.进一步的,所述转换电路模块101内部包括若干个开关,所述若干开关组成桥臂电路,所述转换电路模块100还包括控制器103,用于产生相应的控制信号组至所述若干个开关,而控制所述若干开关相应的导通或断开,而实现所述转换电路模块100的所述直流转交流模式或所述交流转直流模式。例如,所述控制器控制输出第一组控制信号至各个开关,而使得所述转换电路模块100实现所述直流转交流模式;所述控制器并可控制输出第二组控制信号至各个开关,而使得所述转换电路模块100实现所述直流转交流模式。其中,所述第一组控制信号以及第二组控制信号为分别施加至所述若干个开关的控制信号组成,且所述第一组控制信号中的每一个控制信号根据实现直流转交流时,对应的开关需要处于导通还是断开进行预先设置,所述第二组控制信号中的每一个控制信号也可根据实现交流转直流时,对应的开关需要处于导通还是断开进行预先设置。
29.进一步的,所述滤波电路模块102包括若干个滤波电容,所述滤波电容并联以达到更好的滤波效果。
30.因而,请参阅图2,图2为本实用新型一实施例提供的功率模块装置的第一种部分结构示意图:
31.其中,图2中(a)为所述功率模块装置200部分结构的立体示意图,图2中(b)为所述
功率模块装置200部分结构的侧视图。
32.所述功率模块装置200包括滤波电容组1、机架2及滤波电容支架3,所述功率模块装置200应用在逆变器中,其中,所述滤波电容支架3包括第一侧a和第二侧b,所述滤波电容支架3的所述第一侧a固定于所述机架2的外表面上,同时所述滤波电容支架3的所述第二侧b用于固定所述滤波电容组1。
33.所述滤波电容组1包括第一数量个滤波电容4,所述第一数量个所述滤波电容4以矩阵形式排列且所有所述滤波电容4的引脚朝同一方向排列,所有所述滤波电容的背离所述引脚的一端分别固定在所述滤波电容支架3的所述第二侧b上。其中,所述滤波电容4具有两端,一端用于固定于所述滤波电容支架3的所述第二侧b上,一端设置有所述滤波电容4的极性引脚,且所述滤波电容4与所述机架2不接触。
34.其中,所述第一数量根据所述功率模块装置所应用的逆变器的功率变通,在一些实施例中,所述第一数量为15,如图2所示,所述第一数量个所述滤波电容4以矩阵形式排列包括:15个所述滤波电容4以3*5的矩阵形式排列,此时所述逆变器的总功率为250kw。
35.因此,所述滤波电容4通过所述滤波电容支架3设置于所述机架2的外侧,且与所述机架2不接触,进而能够保证所述机架2内的风道畅通;其次,所述第一数量个所述滤波电容4以矩阵形式排列,因而使得所述功率模块装置200的整体尺寸相对小巧,以适用于不同尺寸的逆变器中。
36.请参阅图3,图3为本实用新型一实施例提供的功率模块装置的第二种部分结构示意图:
37.所述功率模块装置200还包括第一母排5、第二母排6;所述第一母排5,用于与所述滤波电容组1的所述第一极进行连接;所述第二母排6,用于与所述滤波电容组1的所述第二极进行连接。
38.所述滤波电容组1包括第一极、第二极,在一些实施例中,所述滤波电容4无正负极之分,因此,所述滤波电容组1中的所有所述滤波电容4的其中一极相连接得到所述滤波电容组1的所述第一极,所有所述滤波电容4的另一极相连接得到所述滤波电容组1的所述第二极。
39.为了更好地展示所述滤波电容组1与所述第一母排5及所述第二母排6之间的连接关系,请参阅图4,图4为本实用新型一实施例提供的功率模块装置的第三种部分结构示意图:
40.其中,图4中(c)为所述功率模块装置200部分结构的立体示意图,图4中(d)为所述功率模块装置200部分结构的后视图。图4中仅包括所述滤波电容组1、所述第一母排5以及所述第二母排6。
41.所述第一母排5上包括所述第一数量个第一端口c,所述第一母排5通过所述第一端口c分别与构成所述第一极的所有所述滤波电容4的一极连接;所述第二母排6上包括所述第一数量个第二端口d,所述第二母排6通过所述第二端口d分别与构成所述第二极的所有所述滤波电容4的一极连接。
42.请一并参阅图3及图4,所述第一母排5与所述第二母排6重叠放置,且所述第一母排5与所述第二母排6之间设置有绝缘材料,重叠放置的所述第一母排5与所述第二母排6均设置于所述滤波电容4支架的所述第一侧a与所述第二侧b之间。
43.请继续一并参阅图3及图4,所述第一母排5上设置有直流正极接线端e,所述第二母排6上设置有直流负极接线端f,所述直流正极接线端e与所述直流负极接线端f分别用于与一直流电源的正极和负极进行连接,进而用于接入或输出直流电。
44.其中,所述直流电源为安装于所述逆变器中的电池或者蓄电瓶,在所述逆变器中,所述电池或者蓄电瓶与所述功率模块装置200需要进行一定的安装,最终来自所述电池或者蓄电瓶的直流电通过所述直流正极接线端e与所述直流负极接线端f接入到所述功率模块装置200的转换电路中,进而实现直流电转换为交流电的逆变。除此之外,本实用新型实施例提供的功率模块装置200还可实现反向逆变,当要实现反向逆变时,交流电经所述功率模块装置200转换为直流电后,所述直流电通过所述直流正极接线端e及所述直流负极接线端f通入所述电池或者蓄电瓶,为所述电池或者蓄电瓶充电,进而实现交流电转换为直流电的逆变。
45.请参阅图5,图5为本实用新型一实施例提供的功率模块装置的第四种部分结构示意图:
46.其中,图5中(e)为所述功率模块装置200部分结构的立体示意图,图5中(f)为所述功率模块装置200另一部分结构的立体示意图,图5中(g)为所述功率模块装置200另一部分结构的正视图。
47.由于一般来说,所述转换模块8为高频运转的电子元器件,在工作的过程中容易产生大量的热量,进而影响所述转换模块8的工作效率,因此,如图5中(e)所示,所述功率模块装置200还包括散热器7,所述散热器7固定在所述机架2上。
48.如图5中(f)所示,所述功率模块装置200还包括转换模块8,所述转换模块8包括正极端、负极端和交流端,用于控制所述功率模块装置的逆变方向,实现交流转直流或者直流转交流。所述转换模块8固定在所述散热器7上,且所述转换模块8的正极端与所述滤波电容组1的所述第一极连接,所述转换模块8的负极端与所述滤波电容组1的所述第二极连接;所述转换模块8的交流端还与一交流接线端口连接。
49.在一些实施例中,所述转换模块包括第二数量个igbt(insulated gate bipolar transistor,绝缘栅双极晶体管)模块9,所述igbt模块9包括正极、负极、交流极,所有所述igbt模块9的正极相连接得到所述转换模块8的正极端,所有所述igbt模块9的负极相连接得到所述转换模块8的负极端;所述第二数量个所述igbt模块9分别固定在所述散热器7上,所述散热器7用于对所述igbt模块9工作时产生的热量进行散热。其中,所述第二数量根据实际情况变通。
50.其中,所述散热器7包括若干个金属片及一支架,所述若干个金属片平行设置于所述支架上,每一金属片之间存在一定距离及缝隙。若干个金属片有利于增大散热面积,对所述igbt模块9工作时产生的热量进行散热。
51.如图5中(g)所示,所述第一母排5上还包括所述第二数量个用于与所述igbt模块9的正极连接的第三端口g,所述第二母排6上还包括所述第二数量个用于与所述igbt模块9的负极连接的第四端口h。
52.所述转换模块8的正极端与所述滤波电容组1的所述第一极连接,包括:所述第一母排5通过所述第三端口g与所述第二数量个所述igbt模块9的正极进行连接。
53.所述转换模块8的负极端与所述滤波电容组1的所述第二极连接,包括:所述第二
母排6通过所述第四端口h与所述第二数量个所述igbt模块9的负极进行连接。
54.其中,igbt(insulated gate bipolar transistor,绝缘栅双极晶体管)是由bjt(双极型三极管)和mos(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,所述igbt包括基极、发射极和集电极,而所述igbt模块9为主要由若干个所述igbt及其他电子元件通过一定电路连接集成的电信号转换模块。因此,由若干个所述igbt及其他电子元件通过一定电路连接集成的所述igbt模块9中用于接入或者接出直流电正极的一端为所述igbt模块9的正极,所述igbt模块9中用于接入或者接出直流电负极的一端为所述igbt模块9的负极,所述igbt模块9中用于接出或者接入交流电的端为交流极。
55.在一些实施例中,所述igbt模块包括两个所述igbt,两个所述igbt串联连接于所述igbt模块9的正极和负极之间,即其中一个所述igbt的集电极与另一个所述igbt的发射极连接,其中一个所述igbt的发射极与所述igbt模块9的负极连接,另一个所述igbt的集电极与所述igbt模块9的正极连接。其中,所述一个所述igbt的集电极与另一个所述igbt的发射极的连接处为输出端,在电流逆变中用于输出交流电,在电流整流中用作输入交流电,故所述输出端为所述igbt模块9的交流极。一个所述igbt模块9通过其内部的电路就能实现电流逆变或整流,但多个所述igbt模块9的正极相连接,多个所述igbt模块9的负极相连接时,能够提供更高的电流密度、均匀热分布以及较高性价比等。因而,在一些实施例中,所述转换模块包括至少一个所述igbt模块9,且至少一个所述igbt模块9的正极相连接、负极相连接,进而满足不同的电流逆变或者整流效果。其中,当仅包括一个igbt模块9时,所述转换模块8构成为半桥桥臂电路,当包括两个igbt模块9时,所述转换模块8的构成为全桥桥臂电路。
56.请参阅图6,图6为本实用新型一实施例提供的功率模块装置的第五种部分结构示意图:
57.所述功率模块装置200还包括三个交流接线端铜排10,三个所述交流接线端铜排10分别通过绝缘材料固定在所述机架2上,三个所述交流接线端铜排10用于与一交流电源进行连接,进而用于输出或接入交流电,其中三个所述交流接线端铜排10分别对应所述交流电源中的三相。
58.任意第三数量个所述igbt模块9中的交流极相连接分别得到三个所述转换模块8的交流端,其中,所述第二数量是所述第三数量的三倍。
59.所述转换模块8的交流端与一交流接线端口连接,包括:三个所述转换模块8的交流端分别与三个所述交流接线端铜排10连接。
60.其中,多个所述igbt模块9中的交流极相连接,能够使所述igbt模块9中的交流极输出的交流电电流更大;除此之外,在所述功率模块装置200要实现反向逆变时,多个所述igbt模块9中的交流极相连接,也能使所述igbt模块9中的交流极能够接入更大的交流电电流,以满足所述逆变器的需要,因此,所述第二数量及所述第三数量根据所述逆变器的总功率及输出的电流、所述igbt模块9的型号和容量变通,且所述第二数量是所述第三数量的三倍,以使所述三个交流端输出的电流或者接入的电流一样大。在一些实施例中,如图6所示,所述第三数量为2,每两个所述igbt模块9中的交流极相连接得到一个所述转换模块8的交流端,并与一个所述交流接线端铜排10连接。
61.请参阅图7,图7为本实用新型一实施例提供的功率模块装置的第六种部分结构示
意图:
62.所述功率模块装置200还包括所述第二数量个吸收电容11,所述吸收电容11包括正极和负极;所述第二数量个所述吸收电容11与所述第二数量个所述igbt模块9相对应,所述第二数量个所述吸收电容11的正极分别与所述第二数量个所述igbt模块9的正极相应连接,所述第二数量个所述吸收电容11的负极分别与所述第二数量个所述igbt模块9的负极相应连接。所述吸收电容11用于消除由于所述第一母排5、所述第二母排6在工作工程中产生的杂散电感引起的尖峰电压,避免所述igbt模块9的损坏。一般来说,每个所述吸收电容11在连接的时候,应分别与每个所述igbt模块9对应连接
63.在一些实施例中,如图7所示,所述第二数量为6,所述功率模块装置200还包括6个吸收电容11,每个所述吸收电容11的正极通过所述第一母排5上的所述第三端口g与每个所述igbt模块9的正极相应连接,每个所述吸收电容11的负极通过所述第二母排6上的所述第四端口h分别与每个所述igbt模块9的负极相应连接。
64.请参阅图8,图8为本实用新型一实施例提供的功率模块装置的第七种部分结构示意图:
65.图8中(h)为所述功率模块装置200部分结构的立体示意图,图8中(i)为所述功率模块装置200另一部分结构的立体示意图.
66.所述功率模块装置200还包括控制器13以及电路板支架12。所述转换模块8还包括控制端,其中,所述控制器13与所述转换模块8的控制端连接,所述控制器13用于控制所述转换模块8,进而控制所述转换电路的逆变方向,实现交流转直流或者直流转交流。
67.如图8中(h)所示,所述电路板支架12固定于所述机架2上,所述电路板支架12用于固定所述控制器13。
68.在一些实施例中,如图8中(i)所示,所述功率模块装置200还包括电路板14,所述控制器13设置于所述电路板14上,所述控制器13包括若干用于控制所述igbt模块9的控制引脚;所述igbt模块9还包括受控端,所述igbt模块9的受控端构成所述转换模块8的受控端。
69.所述控制器13与所述转换模块8的控制端连接,包括:所述控制器13的每一控制引脚连接至对应的一igbt模块9的受控端,相应控制每一所述igbt模块9的导通或截止,进而控制所述转换电路的逆变方向,实现交流转直流或者直流转交流;其中,所述控制器13通过所述电路板14固定于所述电路板支架12上,即所述控制器13设置于所述电路板14上,所述电路板14固定于所述电路板支架12上。
70.在一些实施例中,为了更方便控制所述转换模块8,所述功率模块装置200可包括多个所述电路板14及所述控制器13,每个所述控制器13设置于每个所述电路板14上,每个所述控制器13包括若干用于控制相应所述igbt模块9的控制引脚。如图8中(i)所示,所述功率模块装置200包括3个所述电路板14及所述控制器13,每个所述控制器13分别控制每两个所述igbt模块9,并且每个所述控制器13分别控制所述转换模块8中三个交流端中的其中一端输出或者输入。
71.请参阅图9,图9为本实用新型一实施例提供的功率模块装置的结构示意图:
72.所述功率模块装置200还包括外壳罩15,所述外壳罩15固定于所述机架2上,所述外壳罩15与所述机架2形成一内部空间,所述内部空间用于收容所述功率模块装置200中的
部分电力电子元件及零件,进而有利于所述功率模块装置200中的大部分电力电子元件及零件被封装成一个整体,且不易被损坏。
73.在一些实施例中,如图9所示,由于所述电路板支架12与所述机架2以形成一定的内部空间用于收容所述功率模块装置200中的部分电力电子元件及零件,因此所述外壳罩15也可固定于所述电路板支架12,进而与所述电路板支架12形成另一内部空间以收容所述电路板支架12上固定的所述电路板14及所述控制器13,进而有利于所述功率模块装置200中的大部分电力电子元件及零件被封装成一个整体,且不易被损坏。
74.本实用新型实施例还提供一种逆变器,所述逆变器包括逆变器机架、散热风扇、直流电池以及所述功率模块装置200。其中,所述逆变器机架用于固定所述逆变器中的各部件,所述散热风扇正对设置于功率模块装置200之外,且设置于所述散热器7中所述金属片之间缝隙的延伸方向上,以便于散热风扇工作时,配合所述散热器7对所述转换模块8产生的热量进行散热。
75.其中,所述逆变器还可为储能逆变器或者光伏逆变器,不仅能够实现单向逆变,也可实现反向逆变,即所述逆变器不仅可将直流转换为交流,也可将交流转换为直流。
76.以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以权利要求的保护范围为准。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467