发布时间:2024-10-03 20:10:14 人气:
急需一份关于《弧焊电源发展前景》的论文 大概3000字以上 有文说明最好。往大虾指教~!
弧焊电源技术的发展现状与趋势分析
弧焊技术是现代焊接技术的重要组成部分,其应用范围几乎涵盖了所有的焊接生产领域。电弧焊作为一种基本的金属处理方法,被广泛的运用于国民经济的各部门,为电弧焊提供能量的弧焊电源从诞生起已取得了很大的发展。
1弧焊电源发展历程
作为一种气体导电的物理现象,电弧是在19世纪初被发现的,直到1885年俄国人别那尔道斯发明碳极电弧可以看作是电弧作为热源应用的创始,而电弧真正运用于工业是在1892年发现金属极电弧后。上世纪40年代研究成功埋弧焊,而随着航天与原子能的发展出现了氩弧焊。上世纪50年代出现了CO2与各种气体保护焊并研究出等离子弧焊,到70 - 80年代,弧焊电源的发展更是出现飞跃:多种型式的弧焊整流器相继出现和完善,研制成功多种型式的脉冲弧焊电源,为进一步提高焊接质量和适应全位置焊接自动化提供了性能优良的弧焊电源。此外,还先后研制成功高效节能,性能好,晶闸管式、晶体管式、场效应管式和IGBT弧焊逆变器。随着新型弧焊技术的发展,弧焊电源也有了长足的进步。
2弧焊电源的分类、特点及运用
2.1 弧焊电源的分类
弧焊电源的分类无论是国内还是国外都有不同的分类方法,因此其结果也不尽相同,本文采用陈祝年的分类方法。
2.2各种弧焊电源的特点及运用
弧焊变压器,它把网路电压的交流电变成适宜于弧焊的低压交流电,由主变压器及所需的调节部分和指示装置等组成。
它具有结构简单、易造易修、成本低、效率高等优点,但其电流波形为正弦波,输出为交流下降外特性,电弧稳定性较差,功率因数低,但磁偏吹现象很少产生,空载损耗小,一般应用于手弧焊埋、弧焊和钨极氩弧焊等方法。
矩形波交流弧焊电源,它采用半导体控制技术来获得矩形波交流电流,其电弧稳定性好,可调参数多,功率因数高。它除了用于交流钨极氩弧焊(TIG)外,还可用于埋弧焊,甚至可代替直流弧焊电源用于碱性焊条手弧焊。
直流弧焊发电机,一般由特种直流发电机和获得所需外特性的调节装置等组成.它的缺点是空载损耗较大、磁偏吹现象较明显、效率低、噪声大、造价高、维修难;优点是过载能力强、输出脉动小,可用于各种弧焊方法的电源,也可用柴油机驱动用于没有电源的野外施工。弧焊整流器,它是把交流电经降压整流后获得直流电的,外特性可以是平的或下降的,它由主变压器、半导体整流元件以及获得所需外特性的调节装置等组成。与直流弧焊发电机比较,它具有制造方便、价格低、空载损耗小、噪声小等优点,而且大多数可以远距离调节,能自动补偿电网电压波动对输出电压、电流的影响,但有磁偏吹现象.它可作为各种弧焊方法的电源。
弧焊逆变器,它把单相(或三相)交流电经整流后,由逆变器转变为几百至几万赫兹的中频交流电,经降压后输出交流或直流电。整个过程由电子电路控制,使电源具有符合需要的外特性和动特性。它具有高效节电、质量轻、体积小、功率因数高、控制性能好、动态响应快易于实现焊接过程的实时控制、焊接性能好等独特的优点,可用于各种弧焊方法,是一种最有发展前途的普及型弧焊电源。脉冲弧焊电源,焊接电流以低频调制脉冲方式馈送,一般是由普通的弧焊电源与脉冲发生电路组成,也有其他结构形式。它具有效率高,输入线能量较小,可在较宽范围内控制线能量等优点。这种弧焊电源用于对热输入量比较敏感的高合金材料薄板和全位置焊接,具有独特的优点。
3弧焊电源技术的现状与发展
3.1弧焊电源技术的现状
传统的弧焊电源,如占焊机总产量90%的手弧焊机生产中,是以技术落后的矩形动铁式和大量耗材的动圈式交流弧焊机为主。在我国直流弧焊电源中,在国家三令五申下,虽已逐步减少了电力拖动的旋转式直流弧焊发电机的生产,但未能完全禁绝。对整流式弧焊电源的推广,也是较为困难,由于老式的硅整流弧焊电源的性能难以与旋转式直流弧焊电源相匹敌,而国家重点推广的晶闸管整流电源ZX5 -250、ZX5 - 400初期性能并不稳定,使用户无所适从,这一局面直到90年代中期才得到改变。
数字化弧焊技术是一种新兴的技术,数字化弧焊电源是指焊机主要的控制电路由数字控制技术替代传统的模拟控制技术,且在控制电路中的控制信号也由模拟信号过渡到0 /1编码的数字信号。数字系统与模拟系统相比有着明显的优势,数字系统具有系统灵活性好、控制精度高、稳定性与产品一致性好、接口兼容性好以及系统功能升级方便等特点。1994年,国外Fronius公司的Lahnsteiner.Robert指出,现代GMAW焊接电源应满足多方面的不同需求,如:适合于短路过渡焊接、脉冲焊接、射流过渡焊接和高熔敷率焊接等焊接工艺,合理的焊接电源外特性可以通过原边工作于开关状态的逆变电源实现;大量的焊接规范参数的设计必须实现Synergic控制(一元化控制)以使焊接电源便于操作;为满足新的质量控制要求,焊接电源必须实时记录焊接规范参数、识别偏差量 。基于上述思想,伴随着新型的功能强大的数字信息处理器DSP的出现,Fronius公司推出了全数字化焊接电源,随后Panosonic等公司也推出了各自的数字化焊接电源产品,并相继进入中国市场。数字化焊接电源实现了柔性化控制和多功能集成,具有控制精度高、系统稳定性好、产品一致性好、功能升级方便等优点 。如Fronius公司的Transplus synergic 2700 /4000 /5000系列产品在一台焊机上实现了MIG/MAG、TIG和手工电弧焊等多种焊接方法,可存储近80个焊接程序,实时显示焊接规范参数,通过单旋钮给定焊接规范参数和电流波形参数,可以实现熔滴过渡和弧长变化的精确控制,同时,此类焊接电源还可以通过网络进行工艺管理和控制软件升级。
3.2弧焊电源技术发展
弧焊电源从诞生到目前已经历了一百多年的历史,它总是随着科技的进步而发展。预计未来的弧焊电源将朝着这几方面发展:
其一,数字化弧焊电源。从硬件电路角度看,数字化电源借助DSP技术实现了PID控制器和PWM信号发生电路的数字化。随着实现了模拟电路和数字电路有机结合的混模电路的出现,预计不久的将来分立式的模拟电路将逐步为高度集成的数字化混模电路所取代。而焊接电源和功率模块的设计制造也可根据需要以数字化的方式完成。焊接电源的能量控制由电流、电压、时间的协同方式来完成,具体表现为输出波形的数字化。
其二,绿色弧焊电源。早在2000年就有人提出绿色焊机的概念,绿色焊接是在全球资源与能源日渐紧缺,人民的环保意识逐渐增强的情况下提出的。节能环保的绿色焊机必是未来焊机弧焊电源的研制发展方向。
4结语
近年来随着市场竞争的日趋激烈,提高焊接生产的生产率、保证产品质量、实现焊接生产的自动化、智能化越来越得到焊接生产企业的重视。而人工智能技术、计算机视觉技术、数字化信息处理技术、机器人技术等现代高新技术的溶入,也促使弧焊技术正向着焊接工艺高效化、焊接电源控制数字化、焊接质量控制智能化、焊接生产过程机器人化的方向发展,弧焊设备也向着智能化发展、机器人化发展。本文综述的内容只是其中很少一部分,希望能够起到促进交流,共同提高的作用。
十字开关氩弧焊工作原理
氩弧焊机的工作原理
氩弧焊机在主回路,辅助电源,驱动电路,保护电路等方面的工作原理是与手弧焊机是相同的.在此不再多叙述,而着重介绍氩弧焊机所特有的控制功能及起弧电路功能.
氩弧焊机要求氩气先来后走,而电流则后来先走(相对气而言),这此都是通过手开关控制实现的.
当焊机主开关合上后,辅助电源工作,给控制电路提供了24V的直流电.手开关未合上时,24V直流电通过电阻R5使Q2导通, CW3525芯片的8脚经过T形滤波器(L5,C5组成,抗干扰用)对地短路,此时,CW3525处于封波状态,电路无输出;手开关合上时,24V直流电通过电阻R4, R8使Q1导通,Q2基极被拉低而关断,24V直流电通过电阻R6, R7使Q3导通继电器J3A吸合,使控制气体供给的电磁阀工作,给焊接供气.而8脚电位由于缓起动电阻,电容的作用缓慢增长,经过一定时间,CW3525开始工作,电路开始输出功率.这样,电流就较气延时供给延时时间由缓起动动阻,容值决定).
电磁阀为气体供给控制器件,当继电器J3A合上,电磁阀中的电感线圈获得电流,产生磁能,把铁块吸离气管管口,气体通过电磁阀供给焊接.
手开关控制电路中,电感线圈L1~L4及C1,C2起到防止干扰而使手开关误导通的作用.
手开关合上时,由于Q3导通继电器J3A吸合,电磁阀打开供气.辅助电源向电容C17充电.而由于热敏电阻RT4,RT5的限流,使得手开关不到于因电流过大而损坏;
焊接结束,手开关断开后,Q2导通,CW3525 的8脚电位被拉低,电路停止输出,而C17上仍充有电能,它通过R6,R7放电供给Q3导通,保持电磁阀导通延时供气.实现了焊接对电流,气体的控制要求.
高频,高压电流的产生与控制
产生:氩弧焊机的起弧需要高压,为了能在手弧焊机的基础上产生高压并送到输出回路电路.
工作原理:
升压变压器;图中变压器为24:70,将307电压升高约3倍.
采用4倍压整流电路;(C11~C14,D11~D14)来产生高压:①当升压变压器(T1)初级流过一正脉冲电流时(电压值为U),N2产生一上正下负(正向)的感应电动势,并给电容C14充电,使电容C14的端电压也为U,;且由于线圈续流和D14的作用,在主变中无电流流过时,C14也不能放电;②升压变压器流过一等值的负脉冲电流时,在N2上产生一上负下正的感应电动势(值为U),给C11充电,使得C11上的压降VC11=VC14+U感应 =2V,方向如图;③升压变压器T1再流过一正脉冲电流时,N2上又产生上正下负的感应电动势,这时,电容C13充电,端电压VC13=VC11+U感应-VC14=2V,方向如图;④升压变压器的电流方向再次改变,使得N2上的感应电动势方向为上负下正,这时,电容C12得到电能,且VC12=VC13+VC14-VC11=2V,方向如图,这样,在A,B间便形成了4U的压降.
:(由L3(N3),C5,放电嘴组成)
①A,B两点的压降达到4V(V为逆变器输出电压,约1KV),给电容C15充电;
②放电嘴因高压击穿放电,此时,相当于短路L3,C15;
③L3,C15产生高频振荡,f=L/2π√LC
④由于输出能量的不断补充,使得每隔一定时间,L3,C15便产生高频振荡电流,并通过T4次级输出到输出.由于T4上要通过高频高压的电流,其技术参数要求严格,它的质量是起弧难易,焊接效果的决定性因素.
输出回路中有高频高压电流后,保证了起弧,可如果防护不当,高频高压电流便会反向击穿二次整流中的整流管,甚至损坏主变T1初级线圈所联接的电路,而且,高频高压只是在起弧时使用,起弧后,便不再需要,所以,需适时断开高频高压发生器。
①防干扰控制:在输出端的正负极间接有压敏电阻与电容,其对于高频高压电流来说明相当于短路同时,正负端都接有抗高频的电感线圈,这样,就控制了高频高压电流反窜到二次整流的电路中,只在输出端形成回路.同时,接在正极与机壳间的电阻(压敏)和电容也能有效地防止高频电流及其它干扰.
②的产生与关断控制:高频高压电流的产生与关断都由继电器J控制,手开关全上时,把S2合上,这时,电路工作,输出约56伏的直流电压,它使继电器动作,吸合JA,使高频高压电路工作,产生高频高压电流输出,引起电弧,电弧一引起,输出回路便出现大电流,流经电抗器(电感线圈);由于电感的续流作用,能使电抗器正端电压降到很低的电位(甚至为负值),这时,继电器被可靠地断开,高频高压发生器停止工作,完成了对高频高压电流的控制.
增压起弧控制
为了保护轻易起弧,提供焊接质量,氩弧焊机还在输出端增设了一个增压起弧的装置,其利用高频高压发生器的变压器的另一组次边作为增压变压器,使得高频高压发生器工作时,也同时抬高了输出端的电压,保证起弧,起弧后,增压装置也随着高频高压电流发生器一起被断开
二保焊机可否能当逆变电焊机使用?
二保焊机不可当逆变电焊机使用,工作原理不一样。
逆变式弧焊电源,又称弧焊逆变器,是一种新型的焊接电源。这种电源一般是将三相工频(50Hz)交流网路电压,先经输入整流器整流和滤波,变成直流,再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT)的交替开关作用,逆变成几kHz~几十kHz的中频交流电压,同时经变压器降至适合于焊接的几十V电压,后再次整流并经电抗滤波输出相当平稳的直流焊接电流。
二保焊的原理
CO2气体保护焊的原理以焊丝和焊件作为两个电极,产生电弧,用电弧的热量来熔化金属,以CO2气体作为保护气体,保护电弧和熔池,从而获得良好的焊接接头,这种焊接方法称为二氧化碳气体保护焊。
请教可控硅交直流方波氩弧焊机与逆变交直流方波氩弧焊功能上是否有差别?
可控硅式和逆变式氩弧焊使用区别
1、可控硅整流焊机是将50HZ的交流电整流成直流电输出,通过改变可控硅的导通角来改变输出大小,输出波形不平滑,所以焊接效果不太好,引弧及其他一些控制功能稍差。
逆变式 氩弧焊焊机是将交流电整流后,经过IGBT逆变,再经中频变压器降压,经过二次整流后输出,输出波形好,通过脉宽调制控制IGBT逆变器的导通时间改变输出的大小。引弧及推力电流易于控制。
2、可控硅整流焊机体积大,较为笨重,不便于搬运和移动;而逆变式 氩弧焊焊机由于逆变频率高达20-30KHZ,所以变压器体积小,重量轻,易于搬运。
3、逆变焊机比逆变式 氩弧焊焊机省电约30%左右。
4、逆变式 氩弧焊焊机控制及主电路较为简单,可靠性高,故障点少,易于维修。
可控硅式 和 逆变式 氩弧焊 使用区别 求教
可控硅式和逆变式氩弧焊使用区别
1、可控硅整流焊机是将50HZ的交流电整流成直流电输出,通过改变可控硅的导通角来改变输出大小,输出波形不平滑,所以焊接效果不太好,引弧及其他一些控制功能稍差。
逆变式 氩弧焊焊机是将交流电整流后,经过IGBT逆变,再经中频变压器降压,经过二次整流后输出,输出波形好,通过脉宽调制控制IGBT逆变器的导通时间改变输出的大小。引弧及推力电流易于控制。
2、可控硅整流焊机体积大,较为笨重,不便于搬运和移动;而逆变式 氩弧焊焊机由于逆变频率高达20-30KHZ,所以变压器体积小,重量轻,易于搬运。
3、逆变焊机比逆变式 氩弧焊焊机省电约30%左右。
4、逆变式 氩弧焊焊机控制及主电路较为简单,可靠性高,故障点少,易于维修。
手工无极氩弧焊的电源具有什么特性?
根据焊接工艺方法选择弧焊电源不同弧焊方法所需弧焊电源的空载电压、外特性、动特性和焊接工艺参数是不同的。(1)焊条电弧焊 焊条电弧焊的电弧静特性工作在水平段,要求采用下降外特性的弧焊电源。用酸性焊条焊接一般金属结构时,应选用弧焊变压器,如动铁式、动圈式和抽头式弧焊变压器(BX1-300、BX3-300-1、BX6-120-1)。用碱性焊条焊接较重要的结构钢以及铸铁、铝合金、铜合金时,则应选用直流弧焊电源,如弧焊整流器(ZXG-400、ZXG1-250、ZXG7-300、ZDK-500等)。(2)埋弧焊 埋弧焊电弧处于静特性曲线的水平线段或略上升段。在等速送丝时,宜选用较平缓的下降特性;在变速送丝时,则选用陡降外特性。埋弧焊一般选用容量较大的弧焊变压器(BX2-500、BX2-1000);若产品质量要求较高时,应采用弧焊整流器或矩形波交流弧焊电源。 (3)氩弧焊 钨极氩弧焊要求选用陡降外特性或恒流特性的交流弧焊电源或直流弧焊电源。焊接铝、镁及其合金时,为清除氧化膜并减轻钨电极的烧损,需采用交流弧焊电源,如弧焊变压器,最好采用矩形波交流弧焊电源;焊接其它材料时,最好采用直流弧焊电源,如弧焊逆变器、弧焊整流器,且采用直流正极性,以减轻钨极的烧损。对于熔化极氩弧焊,应选用平特性(等速送丝)或下降特性(变速送丝)的弧焊整流器和弧焊逆变器。对铝及其合金的焊接可采用矩形波交流弧焊电源。对要求较高的钨极和熔化极氩弧焊,也可选用脉冲弧焊电源进行焊接。(4)CO2气体保护焊 一般选用平特性或缓降特性的弧焊整流器和弧焊逆变器,以提高等速送丝电弧自身调节的灵敏度。一般采用直流反接。(5)等离子弧焊 一般多为非熔化极,应选用陡降或垂直阡降外特性的直流弧焊电源。(6)脉冲弧焊 脉冲等离子弧焊和脉冲氩弧焊可选用单相整流式脉冲弧焊电源。在要求较高的场合,宜采用晶闸管式、晶体管式、逆变式脉冲弧焊电源。从上述可见,一种焊接方法并非一定要用某种型式的弧焊电源。但被选用的弧焊电源,必须满足该种工艺方法对电气性能的要求,包括外特性、调节特性、空载电压和动特性。如某些电气性能不能满足要求,也可通过改装来实现,这正体现了弧焊电源具有一定的通用性。
氩弧焊的控制
氩弧焊要求氩气先来后走,而电流则后来先走(相对气而言),这此都是通过手开关控制实现的。由图1知:当焊机主开关合上后,辅助电源工作,给控制电路提供了24V的直流电。手开关未合上时,24V直流电通过电阻R5使Q2导通,CW3525芯片的8脚经过T形滤波器(L5、C5组成,抗干扰用)对地短路,此时,CW3525处于封波状态,电路无输出;手开关合上时,24V直流电通过电阻R4、R8使Q1导通,Q2基极被拉低而关断,24V直流电通过电阻R6、R7使Q3导通继电器J3A吸合,使控制气体供给的电磁阀工作,给焊接供气。而8脚电位由于缓起动电阻,电容的作用缓慢增长,经过一定时间,CW3525开始工作,电路开始输出功率。这样,电流就较气延时供给延时时间由缓起动动阻、容值决定)。
电磁阀为气体供给控制器件,当继电器J3A合上,电磁阀中的电感线圈获得电流,产生磁能,把铁块吸离气管管口,气体通过电磁阀供给焊接。
手开关控制电路中,电感线圈L1~L4及C1、C2起到防止干扰而使手开关误导通的作用。
1、 手开关合上时,由于Q3导通继电器J3A吸合,电磁阀打开供气。辅助电源向电容C17充电。而由于热敏电阻RT4、RT5的限流,使得手开关不到于因电流过大而损坏;
2、焊接结束,手开关断开后,Q2导通,CW3525的8脚电位被拉低,电路停止输出,而C17上仍充有电能,它通过R6、R7放电供给Q3导通,保持电磁阀导通延时供气。实现了焊接对电流、气体的控制要求。 (1) 产生:氩弧焊的起弧需要高压,为了能在手弧焊的基础上产生高压并送到输出回路,采用了如图2的电路。
(2) 工作原理:
1) 升压变压器;图中变压器为24:70,将307电压升高约3倍。
2) 采用4倍压整流电路;如图(C11~C14、D11~D14)来产生高压:①当升压变压器(T1)初级流过一正脉冲电流时(电压值为U),N2产生一上正下负(正向)的感应电动势,并给电容C14充电,使电容C14的端电压也为U,(方向如图);且由于线圈续流和D14的作用,在主变中无电流流过时,C14也不能放电;②升压变压器流过一等值的负脉冲电流时,在N2上产生一上负下正的感应电动势(值为U),给C11充电,使得C11上的压降VC11=VC14+U感应=2V,方向如图;③升压变压器T1再流过一正脉冲电流时,N2上又产生上正下负的感应电动势,这时,电容C13充电,端电压VC13=VC11+U感应-VC14=2V,方向如图;④升压变压器的电流方向再次改变,使得N2上的感应电动势方向为上负下正,这时,电容C12得到电能,且VC12=VC13+VC14-VC11=2V,方向如图,这样,在A、B间便形成了4U的压降。
(3) 高频振荡发生器:(由L3(N3)、C5、放电嘴组成)
①A、B两点的压降达到4V(V为逆变器输出电压,约1KV),给电容C15充电;
②放电嘴因高压击穿放电,此时,相当于短路L3、C15;
③L3、C15产生高频振荡,f=L/2π√LC
④由于输出能量的不断补充,使得每隔一定时间,L3、C15便产生高频振荡电流,并通过T4次级输出到输出。由于T4上要通过高频高压的电流,其技术参数要求严格,它的质量是起弧难易,焊接效果的决定性因素。
输出回路中有高频高压电流后,保证了起弧,可如果防护不当,高频高压电流便会反向击穿二次整流中的整流管,甚至损坏主变T1初级线圈所联接的电路,而且,高频高压只是在起弧时使用,起弧后,便不再需要,所以,需适时断开高频高压发生器,其控制电路如图3所示
①防干扰控制:在输出端的正负极间接有压敏电阻与电容,其对于高频高压电流来说明相当于短路同时,正负端都接有抗高频的电感线圈,这样,就控制了高频高压电流反窜到二次整流的电路中,只在输出端形成回路。同时,接在正极与机壳间的电阻(压敏)和电容也能有效地防止高频电流及其它干扰。
②高频高压电流的产生与关断控制:高频高压电流的产生与关断都由继电器J控制,手开关全上时,把S2合上,这时,电路工作,输出约56伏的直流电压,它使继电器动作,吸合JA,使高频高压电路工作,产生高频高压电流输出,引起电弧,电弧一引起,输出回路便出现大电流,流经电抗器(电感线圈);由于电感的续流作用,能使电抗器正端(图中A点)电压降到很低的电位(甚至为负值),这时,继电器被可靠地断开,高频高压发生器停止工作,完成了对高频高压电流的控制。 氩弧焊影响人体的有害因素有三方面:
(1)放射性 钍钨极中的钍是放射性元素,但钨极氩弧焊时钍钨极的放射剂量很小,在允许范围之内,危害不大。如果放射性气体或微粒进入人体做为内放射源,则会严重影响身体健康。
(2)高频电磁场 采用高频引弧时,产生的高频电磁场强度在60~110V/m之间,超过参考卫生标准(20V/m)数倍。但由于时间很短,对人体影响不大。如果频繁起弧,或者把高频振荡器做为稳弧装置在焊接过程中持续使用,则高频电磁场可成为有害因素之一。
(3)有害气体——臭氧和氮氧化物 氩弧焊时,弧柱温度高。紫外线辐射强度远大于一般电弧焊,因此在焊接过程中会产生大量的臭氧和氧氮化物;尤其臭氧其浓度远远超出参考卫生标准。如不采取有效通风措施,这些气体对人体健康影响很大,是氩弧焊最主要的有害因素。 (1)通风措施 氩弧焊工作现场要有良好的通风装置,以排出有害气体及烟尘。除厂房通风外,可在焊接工作量大,焊机集中的地方,安装几台轴流风机向外排风。
此外,还可采用局部通风的措施将电弧周围的有害气体抽走,例如采用明弧排烟罩、排烟焊枪、轻便小风机等。
(2)防护射线措施 尽可能采用放射剂量极低的铈钨极。钍钨极和铈钨极加工时,应采用密封式或抽风式砂轮磨削,操作者应配戴口罩、手套等个人防护用品,加工后要洗净手脸。钍钨极和铈钨极应放在铝盒内保存。
(3)防护高频的措施
为了防备和削弱高频电磁场的影响,采取的措施有:
1)工件良好接地,焊枪电缆和地线要用金属编织线屏蔽;
2)适当降低频率;
3)尽量不要使用高频振荡器做为稳弧装置,减小高频电作用时间。
(4)其它个人防护措施
氩弧焊时,由于臭氧和紫外线作用强烈,宜穿戴非棉布工作服(如耐酸呢、柞丝绸等)。在容器内焊接又不能采用局部通风的情况下,可以采用送风式头盔、送风口罩或防毒口罩等个人防护措施。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467