Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

客车单相逆变器故障代码

发布时间:2024-10-02 17:20:13 人气:

逆变器驱动板问题

       这是SG3525+LM358驱动升压小板

       脚位功能介绍 DC12V逆变器 DC24V逆变器

       1脚:VCC 1脚:DC12V输入 1脚:DC24V输入

       2脚:12V(IC供电) 2脚:+12V输入 2脚:+12V输入

       3脚:GND 3脚:GND(负极) 3脚:GND(负极)

       4脚:GND 4脚:GND(负极) 4脚:GND(负极)

       5脚:VFB 5脚:高压反馈脚 5脚:高压反馈脚

       6脚:GND 6脚:GND(负极) 6脚:GND(负极)

       7脚:G2 7脚:驱动输出端 7脚:驱动输出端

       8脚:GND 8脚:GND(负极) 8脚:GND(负极)

       9脚:G1 9脚:驱动输出端 9脚:驱动输出端

       10脚:IFB 10脚:mos管Rds检测 10脚:mos管Rds检测

       过流保护检测 过流保护检测

       另外你是要自己设计外围链接电路吗?再补充点特性吧

       SG3525脉宽调制型控制器是美国通用电气公司的产品,作为SG3525的改进型,更适合于远用MOS管作为开关器件的DC/DC交换器,它是采用双级型工艺制作的新型模拟数字混合集电路,性能优异,所需外围器件较少。它的主要特点是:输出级采用推换输出,双通道输出,占空比0-50%可调,每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定,过压保护和软启动等功能。该电路由基准电压源,震荡器,误差放大器,PWM比较器与锁存器,分相器,欠压锁定输出驱动级,软驱动及关断电路等组成,可正常工作的温度范围是0-700C。基准电压为5.1V正/负1%,工作电压范围很宽,为8V到35V。

机供的供电

       我国的机车供电电压共有两种标准,AC380V和DC600V。 目前可以进行机供的机车有东风4DF,11G型内燃机车、韶山7C、7D、7E、8、9,HXD3C型,以及天梭,九方和新造的HXD3D,HXD1D型电力机车。

       DC600V供电系统是25T客车、第三代25G车体有别于25K、第一代和第二代25G车体的最大特点。  在电气化区段,电力机车的列车辅助供电装置将受电弓接受的25KV单相高压交流电降压、整流、滤波,形成两套独立DC600V直流电源,两套装置分两路通过KC20D连接器向空调客车供电,供电容量2x400kW;  在非电气化区段,内燃机车发电机组发电、整流、滤波,形成两套独立DC600V直流电源,两套装置分两路通过KC20D连接器向空调客车供电,供电容量2x400kW;  空调客车通过综合控制柜自动(按车厢号分奇偶选择)将其中一路DC600V送入逆变电源装置(简称逆变器箱,型号:25T-2X35KVA+15KVA,包括两个35KVA逆变器和一个15KVA三相四线制隔离变压器)及DC110V电源装置(简称充电器箱,型号:25T-8KW+3.5KVA,包括一个8KW充电器和一个3.5KVA单相不间断逆变器)。2X35KVA逆变器将DC600V逆变成两路三相50Hz、AC380V交流电,向空调装置、电开水炉等三相交流用电负载供电;8KW充电器将DC600V变换成DC110V直流电,给蓄电池组充电的同时向照明、供电控制等直流负载供电;客室电热和温水箱采用DC600V直接加热。  采用2X35KVA逆变器供电,主要从两方面考虑:一是25T客车除空调机组外,还新增加了许多设备,单车负载容量较大;另一方面是为了适应新的运行方式,增加供电系统的可靠性和安全性。两个逆变器其中一个主要给空调机组供电,另一个给开水炉、伴热等交流负载供电;正常情况下,两个逆变器相互独立,互为热备份。但当其中一个发生故障时,由另一个负责继续向负载供电,只是部分受控负载要减载运行(如空调机组转入半冷或半热工况)。客室电热器、温水箱等电阻性负载之所以采用DC600V直接加热的方式,一方面减轻了逆变器的冬季负载,另一方面减少了电阻性负载引起的漏电流。  由于电气化区段每隔25km左右有一个分相区, DC600V电源装置在过分相区时没有输入电源,因此逆变器和充电器均没有输出;为了避免照明负载的频繁断电,所以照明采用DC110V供电,在牵引区段,由充电器向照明负载供电,而过无电区时则由安装在车下的蓄电池供电。同样,为了保证空调等控制电路的控制电器不频繁吸合和释放,控制电路也采用DC110V供电。  为了防止本车蓄电池过放或故障,保证重要负载(如轴温报警器和防滑器等)的供电,全列蓄电池通过阻断二极管并联。尾灯、共线电话等设施从延续性的角度考虑仍采用DC48V供电。

逆变器的主要分类

        主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。

       逆变器根据发电源的不同,分为煤电逆变器,太阳能逆变器,风能逆变器,核能逆变器。根据用途不同,分为独立控制逆变器,并网逆变器。世界上太阳能逆变器,欧美效率较高,欧洲标准是97.2%,但价格较为昂贵,国内其他的逆变器效率都在90%以下,但价格比进口要便宜很多。除了功率,波形以外,选择逆变器的效率也非常重要,效率越高则在逆变器身上浪费的电能就少,用于电器的电能就更多,特别是当你使用小功率系统时这一点的重要性更明显。 有源逆变器:是使电流电路中的电流,在交流侧与电网连接而不直接接入负载的逆变器;

       无源逆变器:使电流电路中的电流,在交流侧不与电网连接而直接接入负载(即把直流电逆变为某一频率或可调频率的交流电供给负载)的逆变器 多重串联型逆变器应用于电动汽车有诸多优点。串联结构输出电压矢量种类大大增加,增强了控制的灵活性,提高了控制的精确性;同时降低了电机中性点电压的波动。逆变器的旁路特点可提高充电和再生制动控制的灵活性。

       随着人们对城市环境的日益关切,电动汽车的发展得到了一个难得的机遇。在城市交通中,电动大客车由于载量大,综合效益高,成为优先发展的对象。电动大客车大都采用三相交流电机,由于电机功率大,三相逆变器中的器件需要承受高电压和大电流应力的作用,较高的dv/dt又使电磁辐射严重,并且需要良好的散热。

       而采用多重串联型结构的大功率逆变器则降低了单个器件承受的电压应力,降低了对器件的要求;降低了dv/dt值,减少了电磁辐射,器件的发热也大大减少;由于输出电平种类增加,控制性能更好。

       多重串联型逆变器适用于大功率的电动汽车驱动系统。采用多重串联型结构,可降低多个蓄电池串联带来的危险,降低器件的开关应力和减少电磁辐射。但需要的电池数增加了2倍。

       多重串联型结构输出电压矢量种类大大增加,从而增强了控制的灵活性,提高了控制的精确性;同时降低电机中性点电压的波动。为维持每组蓄电池电量的均衡,在运行时需要确保电池的放电时间一致。通过旁路方式,可灵活地对蓄电池组充电,还可控制再生制动的力矩。 车载逆变器一般使用汽车电瓶或者点烟器供电,先将低压直流电转换为265V左右的直流电,然后将高压的直流电转变为220V、50Hz的交流电。车载逆变器打破了在车内使用电器的诸多局限。车载电源不仅适用于车载系统,只要有DC12V直流电源的场合,都可使用。车载逆变器充分考虑到外部的使用环境,当发生过载或短路现象时将自动保护关机。

       车载逆变器的使用方法

       1、把车载逆变器插入汽车点烟器插座内,插入时请检查插头与插座之间松紧程度。太松时把插头部的两边弹片张开,然后插入点烟插座内。

       2、确认车载逆变器的电源指示灯是否发亮。

       3、把要使用的电器的电源插头插入车载电源转换器的插座内。

       注意事项:

       1、拔下连续使用中的电器插头时,务必先确认使用电器的开关是否已拨在”关”上,然后再拔掉电源插头。

       2、更换车载逆变器的保险丝时务必使用同一型号、规格的保险丝,使用指定规格以外的保险丝或金属丝会引起异常过热和火灾。

       3、及时清理车载逆变器插头处脏物,以免引起转换器接触不良或异常过热。

       4、使用后或不使用车载逆变器时,要从点烟插座上拔下车载逆变器并妥善保管。

       车载逆变器的选择

       车载逆变器是一种工作在大电流、高频率环境下的电源产品,其潜在故障率相当高。因此,消费者在购买时一定要慎重。首先,从逆变器输出波形上选,最好不要低于准正弦波;其次,逆变器要有完备的电路保护功能;第三,厂家要有良好的售后服务承诺;第四,电路和产品经过一段时间的考验。

       1、选择车载电源除了价格因素外,主要需要考虑的是车载电源对输入电压的要求和输出功率的大小,此外由于各种用电器的功率差别很大,因此要根据使用需求选择车载电源,原则是够用为主。

       2、根据使用的电器的种类不同需选择合适的车载电源,对于日常的阻性用电器选择方波、修正波、正弦波的都可以合使用,对于感性的用电器则必须选择正弦波逆变器了。

       3、方波/修正波逆变电源不能带感性负载和容性负载,不能带动空调,冰箱,也难以为高质量的音响电视提供电源。严格上讲方波/修正波逆变电源会影响用电器的使用寿命,这些问题在使用正弦波逆变器时不会出现。

       4、一般小轿车内的点烟器保险为10A或15A(10A的保险多为老旧车型或原装进口车型的),这说明一般的小轿车内可以使用的车载逆变电源为120W或180W的。如果需要大功率的逆变器(超过180W或200W的)则一定要看一下包装内是否有电瓶夹线,没有电瓶夹线的大功率逆变器在小轿车上使用会有所限制。

       5、一般的车载电源在点烟器端都会有保险,汽车用品齐齐网提醒购买时一定需要打开查看一下这个保险与汽车点烟器的保险是不相匹配(理论上要小于或等于点烟器的保险),这样点烟器的保险才能起到作用,反之会使汽车点烟器的保险烧掉,会造成没必要的麻烦。

       车载逆变器注意事项

       首先,要严格按照用户手册的规定来使用逆变器;

       其次,逆变器的输出电压是220伏交流电,而这个220伏电是在一个狭小的空间并处于可移动状态,因此要格外小心。应将其放在较为安全的地方,以防触电。在不使用时,最好切断其输入电源;

       第三,不要将逆变器置于太阳直晒或暖风机出口附近。逆变器的工作环境温度不宜超过摄氏40度;

       第四,逆变器工作时会发热,因此不要在其附近或上面放置物品;

       第五,逆变器怕水,不要使其淋雨或撒上水。

25g型dc600v供电客车绝缘

       直流机车?

       按照你说的检测是好的话,按照我的经验来说一般是导线打铁。因为是不确定发生的软故障,有时好有时怀只有这一个可能。

       原因很简单,但检测很麻烦,需对全车电路导线检查。

       像你说的逆变器,电容,电机等坏了就是坏了,不可能呼好呼坏。只有导线磨损后才出现晃动后无规律绝缘降低。俗称打铁。

       我检修十四吨机车出现过类似现象,原因是电机线磨损打铁。检修五吨脉冲车,无规律出现机车高速失控,原因是导线过热外皮烧毁打铁。

       我是煤矿的,可能和你的不一样,不一定能帮上忙,试试看吧。

cvcf系统逆变器是怎么样的逆变器

       IGBT综述  1.1 IGBT的结构特点  IGBT是大功率、集成化的“绝缘栅双极晶体管”(Insulated Gate Bipolar Transistor)。它是80年代初集合大功率双极型晶体管GTR与MOSFET场效应管的优点而发展的一种新型复合电子器件,兼有MOSFET的高 输入阻抗和GTR的低导通压降的优点。图1所示为N沟道增强型垂直式IGBT单元结构,IGBT采用沟槽结构,以减少通态压降,改善其频率特性。并采用 NFT技术实现IGBT的大功率。IGBT用MOSFET作为输入部分,其特性与N沟道增强型。MOS器件的转移特性相似,形成电压型驱动模式,用GTR 作为输出部件,导通压降低、容量大,不同的是IGBT的集电极IC受栅一射电压UCE的控制,导通、关断由栅一射电压UCE决定。  目前大部分逆变器都采用IGBT和IPM作为开关器件,由IGBT基本组合单元与驱动、保护以及报警电路共同构成的智能功率模块(IPM)已成为IGBT智能化的发展方向,将IGBT的驱动电路、保护电路及部分接口电路和功率电路集成于一体的功率器件。35 kW等级的DC 600 V逆变器一般采用1 200 V/300 A模块,IGBT和IPM分为单单元和双单元,3只双单元模块可构成i相逆变器主电路,如图2所示。  1.2 IGBT轨道车辆在供电系统中的应用  轨道车辆中广泛采用IGBT模块构成牵引变流器以及辅助电源系统的恒压恒频(CVCF)逆变器。国外的地铁或轻轨车辆辅助系统都采用方案多样的 IGBT器件。德国针对机车牵引需开发适用于750 V电网的1.7 kVIGBT和用于1 500 V电网的3.3 kV IGBT模块,简化了牵引逆变器主电路的结构。日本的700系电动车组的三点式主变流器.采用大功率平板型IGBT(2 500 V/1 800 A),整流器和逆变器的每个桥臂可用1个IGBT元件,从而使IGBT组件在得到简化的同时,功率单元总体结构也变得紧凑。  我国引进法国Alstom公司的200 km/h动车组中,主变流器的开关使用耐压高达6 500 V/600 A的IGBT器件,辅助变流器采用开关频率为1 950 Hz的PWM技术,由3台双IGBT和相关反并联二极管组成,每台双IGBT组成三相中的一相;上海轨道交通3号线车辆是其辅助系统由电压等级为330 V的IGBT构成2点式逆变器直接逆变;广州地铁1号线车辆上的辅助系统采用IGBT双重直-直变换器带高频变压器实现电气隔离;深圳地铁一期采用6个用 作牵引逆变器的IGBT模块和2个用于制动斩波器的IGBT模块完成牵引逆变功能:天津滨海动车组主电路采用IGBT电压型三相直一交逆变器,辅助电源的 逆变器采用IGBT元件的逆变器,开关容量为3 300 V/800 A。  2 IGBT在DC 600 V中的应用  2.1 DC 600 V客车供电系统简介  DC 600 V空调客车供电系统采用机车集中整流,客车分散逆变方式,构成了整个列车的交一直一交变流供电系统。工作过程为:电力机车将25 kV电网单相交流电降压、整流、滤波成DC 600 V后给客车供电,客车根据用电设备的需要,将机车提供的DC 600 V变换成单、三相交流电及DC 110 V。系统采用两套独立供电。具有一定的冗余,客车供电的基本原理图如图3所示。  2.2 IGBT在DC 600 V供电系统逆变器中的应用  空调客车使用2个由IGBT模块组成的35 kW逆变器供电,逆变器主电路原理如图4所示,主要由下功能模块构成:  (1)由KMl、KM3电磁接触器组成的输入输出隔离电路,主要功能是在逆变器、输入电路或输出负载发生故障时实施隔离,防止故障扩散。  (2)由滤波电容C1,C2组成的中间支撑电路,主要功能是滤平输入电路的电压纹波,当负载变化时,使直流电压平稳。由于逆变器功率较大,因此 滤波电容的容量较大,一般使用电解电容。由于电容自身参数的离散,使得串联的2只电容电压无法完全一致.采用电容两端并联均压电阻的方法,图4中的R1、 R2,其另一个作用是在逆变器停止工作时,放掉电容器的电荷。  (3)由R0和KM2组成的缓冲电路,工作原理为:在输入端施加电压时,先通过缓冲电阻R0对电容充电。当电容电压充到一定值时(比如540 V),KM2吸合,将R0短路。只有电阻R0短路,三相逆变电路才能启动工作。  (4)由L1~L3和C1~C3,组成的交流滤波电路,可将逆变器输出的PWM波变成准正弦波。  (5)由V1~V6组成的桥式三相逆变主电路是逆变器的核心电路。图4为三相逆变器的主电路图,输入端为A、B,输出为U、V、W。图5中V1~V6的导通顺序,阴影部分为各个IGBT的导通时间。每一格的时间为π/3,三相线电压的波形如图5所示。  由图4看出,U、V、W三者之间的相位差为2π/3,幅值与直流电压Ud相等。由此可见,只要按照一定的顺序控制6个逆变器的导通与截止,就可把直流电逆变成三相交流电。  (6)如果将方波电压按照正弦波的规律调制成一系列脉冲,即使脉冲系列的占空比按正弦规律排列,当正弦值为最大时,脉冲的宽度也最大;反之,当 正弦值为最小时.脉冲的宽度也最小,把脉冲的宽度调制的越细.即一个周期内脉冲的个数越多,调制后输出的波形越好,电动机负载的电流波形越接近于正弦波, 图6为负载波形。  3 IGBT在DC 600 V供电系统中的保护  由于IGBT的耐过压和耐过流能力较差,一旦出现意外就会损坏,因此必须对IGBT进行保护,客车DC 600 V供电系统逆变器的IGBT模块有过压、欠压保护,过流、过载、过热等保护功能。  3.1 过压和欠压保护  使用IGBT作开关时.由于主网路的电流突变,加到IGBT集电-发射问容易产生高直流电压和浪涌尖峰电压。直流过电压的产生是输入交流电或 IGBT的前一级输人发生异常所致。解决方法是在选取IGBT时进行降额设计;也可在检测m过压时分断IGBT的输入,IGBT的安全。目前,针对浪涌尖 峰电压采取的措施有:  (1)在工作电流较大时,为减小关断过电压,应尽量使主电路的布线电感降到最小;  (2)设置如图7所示的RCD缓冲电路吸收保护网络,增加的缓冲二极管使缓冲电阻增大,避免导通时IGBT功能受阻的问题。  对于由接触网电压的波动而造成的输出欠压,逆变器可以不停止工作,而是采取降频降压的方式,即当输人电压低于540 V时,逆变器按照Y/F=C(常数)的规律降频降压工作。  3.2 过流与过载保护  空调客车的IGBT模块逆变器具备承受电动机负载突加与突减的能力:当输出侧和负载发生短路时,逆变器能立即封锁脉冲输出,并停止工 作,IGBT产生过电流的原因有晶体管或二极管损坏、控制与驱动电路故障或干扰引起的误动、输出线接错或绝缘损坏等形成短路、逆变桥的桥臂短路等。 IGBT承受过电流的时间仅为几微秒。通常采取的过流保护措施有软关断和降低栅极电压两种。  软关断抗干扰能力差,一旦检测到过流和短路信号就关断,容易发生误动,往往启动保护电路,器件仍被损坏。降低栅极电压则是在检测到器件过流信号 时,立即将栅极电压降到某一电平,此时器件仍维持导通,使过电流值不能达到最大短路峰值,就可避免IGBT出现锁定损坏。若延时后故障信号仍然存在,则关 断器件;若故障信号消失,驱动电路可自动恢复正常工作状态.大大增强了抗干扰能力。  当逆变器的输出超过其自身的输出能力,称为过载,逆变器的过载检测靠输出侧的电流或输入侧的直流电流传感器。一般情况下逆变器的过载保护为反时限特性。即设定过载电流为额定电流的1.5倍持续1 min后保护,而低于1.5倍可延长保护动作时间。而高于1.5倍时则保护动作的时间小于1 min。  3.3 过热保护  当逆变器的散热器温度超过允许温度时,散热器的热保护继电器给出信号让逆变器的控制电路自动封锁脉冲,停止工作。通常流过IGBT的电流较大, 开关频率较高,故器件的损耗较大。若热量不能及时散掉,器件的结温将会超过最大值125℃,IGBT就可能损坏。散热一般是采用散热器,可进行强迫冷却。 实际应用中,采用普通散热器与强迫冷却相结合的措施。并在散热器上安装温度开关,可在靠近IGBT处加装一温度继电器,以检测IGBT的工作温度。同时, 控制执行机构在发生异常时切断IGBT的输入,以保护其安全。  4 结语  IGBT模块开关具有损耗小、模块结构便于组装、开关转换均匀等优点。已越来越多地应用在铁路客车供电系统中。在应用IGBT时,应根据实际情况对过流、过压、过热等采取有效保护措施,以保证IGBT安全可靠地运行。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言