Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

纳米逆变器打鱼机

发布时间:2024-09-05 18:10:15 人气:

老郭非晶逆变器耐用不

       老郭非晶逆变器耐用。非晶和纳米晶材料作为一种磁性材料,广泛应用于5G、新能源汽车、新基建、电力、航空航天、环保、国防安全、交通、通信微电子等领域。非晶逆变器电路先进,逆变效率高,发热小耐用。

纳米晶磁粉芯

       纳米晶软磁粉芯

        该项目由南昌大学材料科学与技术学院研发。这是一种以纳米晶体金属材料(铁基)为基体材料,与其它纳米粉体(如纳米TiO2)复合后,严格按照一定的尺寸和结构要求成型的一种纳米复合材料磁芯。该产品具有高饱和磁感、低铁损、高起始导磁率、低矫顽力的特性,可取代硅钢、坡莫合金、铁氧体等传统软磁材料铁芯,实现高频信号转换、控制、保护、滤波、抗干扰、稳压、多路输出、电压调节等功能。

        技术特点: 这类材料具有高磁导率、高饱和磁通、低矫顽力、低铁损、频散特性好等优点,是目前世界上公认的综合性能最好的软磁材料.目前,这种材料已在很宽的领域内代替Co基非晶和Fe基非晶制造出共模扼流圈、高频开关电源、高频逆变器、零序互感器等许多电气元件.同时,这种材料也是高灵敏度保真磁头、高性能磁放大器等元件的最佳材料。

        技术路线:单辊法制备铁基非晶软磁带材非晶材料热处理与磁性能调整预粉碎(高能球磨)热处理与磁性能调整气流粉碎粉体分级粉体表面处理粉体性能检测。

        技术水平:1、完全能够按照当前国际市场上软磁粉芯的要求设计并制造出合格的国产粉芯。技术水平为国内领先,达到国际先进水平。2、非晶粉体粒度达到10μm以下;纳米晶粉体粒度达到1μm以下。能稳定生产,工艺成熟。技术水平为国内领先,达到国际先进水平。

        应用范围: 广泛应用于开关电源、通讯电源中、逆变电源、UPS不间断电源中制作高频变压器、控制变压器、磁放大器、ISDN信号转换器、共模电感器、噪声滤波器、滤波电感器、储能电感、饱和电感、电抗器、尖峰抑制器、脉冲压缩器、开关管保护器、DC-DC转换器控制元件。

        市场前景及效益分析: 本公司技术具有技术新颖、投资少、见效快的特点,特别适合中国国情,适合中小企业、个体经营者投产;主要产品:非晶/纳米晶粉体(包括超细粉体)是基本的工业原料(磁粉体),不存在销售问题;磁粉芯更是铁芯的替代品,不仅在性能上优越,价格上也具有竞争力。针对Fe73.5Cu1Nb3Si13.5B9基非晶/纳米晶材料提出了制备超细粉体的要求。国内外未见有该项目创新内容方面的文献报道,同时,我国生产实践也确实没有该方面的技术使用。目前,国内市场仅有日本东芝生产的粉芯在PC电源市场上销售。该项目通过科技园已成功转让,并正在建立生产线。

        纳米微晶软磁材料

        非晶材料通常采用熔融快淬的工艺。Fe-Si-B是一类重要的非晶态软磁材料。如果直接将非晶材料在晶化温度进行退火,所获得的晶粒分布往往是不均匀的。为了获得均匀的纳米微晶材料,人们在Fe-Si-B合金中再添加Nb、Cu元素。Cu、Nb均不回溶于FeSi合金。添加Cu有利于生成铁微晶的成核中心,而Nb有利于细化晶粒。1988年牌号为Finement的著名纳米微晶软磁材料问世了。其组成为Fe73.5Cu1Nb3Si13.5B9,磁导率高达105,饱和磁感应强度为1.30T,性能优于铁氧体与非磁性材料。作为工作频率为30kHz的2kW开关电源变压器,重量仅为300g,体积仅为铁氧体的1/5,效率高达96%。继Fe-Si-B纳米微晶软磁材料后,20世纪90年代Fe-M-B、Fe-M-C、Fe-M-N、Fe-M-O等系列纳米微晶软磁材料如雨后春笋破土而出。其中M为Zr、Hf、Nb、Ta、V等元素,例如组成为Fe85.6Nb3.3Zr3.3B6.8Cu1的纳米坡莫材料。纳米微晶软磁材料目前沿着高频、多功能方向发展,其应用领域将遍及软磁材料应用的各方面,如功率变压器、脉冲变压器、高频高压器、可饱和电抗器、互感器、磁屏蔽、磁头、磁开关、传感器等,它将成为铁氧体的有力竞争者。新近发现的纳米微晶软磁材料在高频场中具有巨磁阻抗效应,又为它作为磁敏感元件的应用增添了多彩的一笔。

        随着半导体元件大规模集成化,电子元器件趋于微型化,电子设备趋于小型化。相比之下,磁性元件的小尺寸化相形见绌。近年来,磁性薄膜器件如电感器、高密度读出磁头等有了显著的进展。1993年发现的纳米结构Fe55~58M7~22O12~34(其中M=Hf,Zr,…),具有优异的频率特性。Fe-M-O软磁膜是由小于10nm的磁性微晶嵌于非晶态Fe-M-O的膜中形成的纳米复合薄膜。它具有较高的电阻率(ρ>mW·m),相对低的矫顽力(Hc≤400A/m),较高的饱和磁化强度(Is>0.9T),因而在高频段亦具有高磁导率与品质因子。此外抗腐蚀性强,其综合性能远高于以往的磁性薄膜材料。这类薄膜可望应用于高频微型开关电源,高密度数字记录磁头以及噪声滤波等。

捕鱼器电到的鱼怎么漂不上来?

       可能是因为电压太高,浮鱼不好。电流过大时间过长。

       功率太大电到鱼即死没有漂浮反应,或频率太高,鱼虽没死,但电僵不能浮动。

       如果没有成功可以试着调低电压,频率,使鱼有浮动反应时间,无后极的加后极电路来提高浮鱼效果。

       功率太大电到鱼即死没有漂浮反应,或频率太高,鱼虽没死,但电僵不能浮动,输出电的性质白金机因输出是交流电,电鱼乱跑,有后极输出脉冲直流电的频率适合时浮鱼效果特好。

       电鱼机电鱼半径就半米左右,只能把鱼电晕了漂起来,有的鱼即使电晕了也不会漂起来。把频率开到最大,高压开到最大试试。电鱼机是将低电压大电流的电源变换成高电压,瞬间大电流的脉冲直流变换器。

       勤提勤动,诱鱼上钩 鱼钩下沉至水底,并不是完全处于理想的位置。由于水体下地质比较复杂,有时恰好沉在岩石缝隙、水草上或枯叶底下,有时被木柱所遮盖、杂物所隐蔽、小坑或淤泥所埋没,鱼看不到钓饵便不合摄食。因此,在钓鱼活动中,一经发现鱼漂久无动静,就该勤提钓竿,不断变化鱼钩位置,增加鱼的视觉机会,诱鱼上钩。 机动灵活,声东击西 一般地说,钓鱼目标不可死守。即使鱼的数量稀少,或等候大鱼的时候,也不能固守不动。一个窝点钓上几条鱼,就该在另一个窝点上下钩;而且在一个窝点上还要照顾到前后左右的位置。如果几个喂窝点暂时都不出鱼,应在喂窝点近处、远处或其它草丛里试钓游动的鱼,不断变换钓鱼地点。

什么是纳米能源?纳米能源可以用来做什么?

       这是一个大问题。我简单从纳米材料的维度来划分应用,具体的应用领域可以在各种综述文章中找到。最常见的零维纳米材料是各种贵金属纳米粒子,如金纳米粒子和铂纳米粒子。铂纳米粒子最常见的应用是高效催化剂。详见夏有南老师的作品。最常见的一维纳米材料有硅纳米线、碳纳米管、碳纳米纤维等。一些研究小组使用单个碳纳米管作为逆变器,一些研究小组使用它作为生化传感器进行敏化,一些行业使用碳纳米纤维作为羽毛球拍。

       石墨烯是当今二维纳米材料中最热门的东西,目前已经有一部分产业化用于电池和显示屏。当然,其出色的性能本来可以用来替代硅作为各种芯片的底层材料,也有可能突破功耗、速度和体积带来的摩尔定律限制。但是它的带隙不能打开,所以不能完成开关功能,所以不能做成可行的MOS管。现在,各种新的二维材料已经出现,如二硫化钼、磷苯等。

       希望获得优异的性能,综上所述,纳米材料的研究在科学界如火如荼,但其在工业上的应用受到产量、均匀性和团聚性等缺点的限制。纳米材料本身就是好东西。我们不能更好地使用它们,可能是因为我们对它们不够了解。给科学界一些时间,纳米技术的出现和纳米材料的成功发展,激励了全球电池行业,电池行业的专家学者看到了新的希望。

       为了全面改善真实电池的各种性能,已经连续进行了各种实验。经过数千次失败和成功的测试,在有限的电池测试中取得了令人满意的结果。电池性能有了很大的提高。一般来说,电池的容量可以提高10%-30%,电池的比功率可以提高25%-35%,电池的使用寿命可以提高40%-60%,这使得电池的性价比得到了前所未有的提高。

纳米非晶逆变器怎么样

       纳米非晶逆变器好。

       1、纳米非晶逆变器1200W效果好,逆变效果好,适用于多种电器设备。

       2、逆变器由逆变桥、控制逻辑和滤波电路组成,广泛应用于空调、家庭影院、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱、录像机、按摩器、风扇、照明等。

光伏逆变器的系统成本

       在光伏逆变器中运用新型SiCBJT可实现更低的系统成本。

       最近,碳化硅(SiC)的使用为BJT赋予了新的生命,生产出一款可实现更高功率密度、更低系统成本且设计更简易的器件。SiCBJT运用在光伏电源转换器中时,可实现良好效率,并且(也许更重要的是)能够使用更小、更便宜的元件,从而在系统级别上显著降低成本。

       在过去30多年中,诸如MOSFET和IGBT之类的CMOS替代产品在大多数电源设计中逐渐取代基于硅的BJT,但是今天,基于碳化硅的新技术为BJT赋予了新的意义,特别是在高压应用中。

       碳化硅布局以同等或更低的损耗实现更高的开关频率,并且在相同形状因数的情况下可产生更高的输出功率。运用了SiCBJT的设计也将使用一个更小的电感,并且使成本显著降低。虽然运用碳化硅工艺生产的BJT相较于仅基于硅的BJT会更昂贵,但是使用SiC技术的优势在于可在其它方面节省设计成本,从而实现更低的整体成本。本文介绍的升压转换器设计用于光伏转换阶段,其充分利用SiCBJT的优势,在显著降低系统成本的同时可实现良好的效率。

       碳化硅的优势

       基于硅的BJT在高压应用中失宠有几方面原因。首先,SiBJT中的低电流增益会形成高驱动损耗,并且随着额定电流的增加,损耗变得更糟。双极运行也会导致更高的开关损耗,并且在器件内产生高动态电阻。可靠性也是一个问题。在正向偏压模式下运行器件,可能会在器件中形成具有高电流集中的局部过温,这可能导致器件发生故障。此外,电感负载切换过程中出现的电压和电流应力,可能会导致电场应力超出漂移区,从而导致反向偏压击穿。这会严格限制反向安全工作区(RSOA),意味着基于硅的BJT将不具有短路能力。

       在运用碳化硅的新型BJT中不存在同样的问题。与硅相比,碳化硅支持的能带间隙是其三倍,可产生更大的电流增益,以及更低的驱动损耗,因此BJT的效率更高。碳化硅的击穿电场强度是硅的10倍,因此器件不太容易受到热击穿影响,并且要可靠得多。碳化硅在更高的温度下表现更出色,因此应用范围更为广泛,甚至包括汽车环境。

       从成本角度而言,碳化硅的高开关频率在硬件级可实现成本节约。虽然相较于基于纯硅,基于碳化硅的BJT更昂贵,但SiC工艺的高功率密度将会转换为更高的芯片利用率,并且支持使用更小的散热器和更小的过滤器元件。从长远来看,使用更昂贵的碳化硅BJT实际上更省钱,因为整体系统的生产成本更低。我们设计的升压转换器就是一个例子。它设计用于额定功率为17千瓦的光伏系统中,具有600伏的输出电压,输入范围为400到530V。

       管理效率

       BJT的驱动器电路能够减少损耗和提高系统效率。驱动器做了两件事:对器件电容迅速充放电,实现快速开关;确保连续提供基极电流,使晶体管在导通状态中保持饱和状态。

       为了支持动态操作,15V的驱动器电源电压引起更快的瞬态变化,并提高性能。SiCBJT的阈值电压约为3V。通常情况下无需使用负极驱动电压或米勒钳位来提高抗扰度。

       SiCBJT是一个“常关型”器件,并且仅在持续提供基极电流时激活。选择静态操作的基极电流值会涉及到传导损耗和驱动损耗间的折衷平衡。尽管有较高的增益值(因此会形成较低的基极电流),驱动损耗对SiCBJT仍非常重要,由于SiC布局具有较宽能带间隙,因此必须在基极和发射极间提供一个更高的正向电压。将基极电流增加一倍,从0.5A增加到1A,仅降低正向等效电阻10%,因此需要降低传导损耗,同时使饱和度转变为较高水平。这是我们设计升压转换器的一个重要考虑因素,因为它会在更高的电流纹波下运行。1A的基极电流会使开关能力增加至40A

       静态驱动损耗是选定驱动电压和输入电压的一个函数(间接表示占空比值)。实现高开关速度需要15V的驱动电压,产生约8W的损耗,主要集中在基极电阻上。为了弥补这方面的损耗,对于动态和静态操作,我们通常使用两个单独的电源电压。图1提供了示意图。高压驱动器的控制信号会“中断”,因此它仅在开关瞬态期间使能。静态驱动阶段使用较低电压,从而可以降低静态损耗,并在整个导通期间保持激活状态。

       图1.使用两个电源电压降低损耗

       减小滤波器的尺寸

       在更高的开关频率下运行,可降低无源元件的成本。为了进一步提高功率密度,我们着眼于改善滤波器电感的方法。在评估了各种核心材料的能力后,我们选择了一种使用Vitroperm500F(一种薄夹层式纳米晶体材料)制成的新型磁芯材料。该材料产生的损耗低,且在高频率下运转良好。此外也可在高饱和磁通值下运行,这意味着该材料比类似的铁氧体磁芯(图2右侧)要小得多。使用Virtoperm磁芯构成的滤波电感器,约为参照系统的四分之一大小。

       图2显示了在最大电流纹波(40%)下对于不同材料将电感器尺寸作为开关频率函数的因素。在此,我们假设电感量近似为电感值,而这又取决于峰值磁通密度和开关频率。在达到指定的临界点(在100mW/cm时定义的特定损耗3)后,需要降低峰值磁通量以避免过热,从而在该点之外运行将不会导致其大小显著减小。频率一定时,Vitroperm500F可在所有材料中实现最佳性能。

       图2.用作频率函数的不同芯材的电感器大小,以及与Vitroperm和铁氧体磁芯的大小比较

       图3显示了测得的效率级,包括采用两阶段解决方案的驱动损耗。根据计算得出的损耗分布如下图曲线所示。该系统可以在没有达到临界温度或饱和度的情况下达到高电流负载。该两阶段驱动解决方案会将驱动损耗降低至输入功率的0.02%左右。整体损耗更低使得所需的散热片尺寸减小,且更高的开关频率允许使用更小的过滤器元件。所有这些特性最终有助于降低系统成本。

       图3.48kHz时的效率和驱动损耗,以及原型图

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言