Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

中山洲恒逆变器

发布时间:2024-08-15 07:30:14 人气:

电动汽车电机差别

       新能源汽车有三大优势:环保、经济、简单。在纯电动汽车中尤其明显:电动机代替燃油发动机由电动机驱动,没有自动变速器。与自动变速器相比,该电机结构简单,技术成熟,运行可靠。甚至被认为是中国汽车工业在新能源汽车产业中的实现&ldquo弯道超车。希望的领域之一。新能源电动蒸汽伴侣需要由电机驱动系统、电池系统和车辆调节系统三部分组成,其中电机驱动系统直接将电能转化为机械能,这决定了电动汽车的性能指标。因此,驱动电机的选择尤为重要。然后,汽车边肖会耐心而简要地向朋友们介绍电动车电机的不同之处。

       电动汽车的驱动电机应具有以下特征:

       l大范围恒功率,满足汽车变速性能。

       l启动扭矩大,调速能力强

       l高效率,大面积高效率

        style="text-align:center;">

        style="text-align:center;">

        style="text-align:center;">

        style="text-align:center;">

        style="text-align:center;">

        style="text-align:center;">

       l瞬时功率大,过载能力强

       l功率密度高,体积小,重量轻

       l环境适应性强,适应恶劣环境

       l能量反馈效率高

       根据驱动原理,电动汽车的驱动电机可以包括以下四种类型:

       1.直流电动机

       在电动汽车发展的初期,很多电动汽车基本上都采用了DC电机方案。关键是看中DC电机的成熟产品,轻松的调节方式和出色的调速。但是,由于DC电机本身的短板非常突出,其机械结构复杂(电刷和机械换向器等)。)限制了其瞬时过载能力和电机转速的进一步提高。而且在长时间工作的情况下,电机的机械结构会造成损耗,增加维护成本。另外,电机转动时,电刷火花会使转子发热,浪费能量,使散热困难,还会造成高频电磁干扰。这些因素基本上会影响到具体的车辆性能。

       由于DC汽车的缺点非常突出,DC汽车已经在电动汽车中被淘汰。

       2.交流异步电动机

       交流异步电机是目前工业上广泛使用的一种电机。其特点是定子和转子由硅钢片叠片而成,硅钢片两端由铝盖封装,定子和转子之间没有机械零件相互接触。它结构简单,运行可靠耐用,维修方便。交流异步电机比同等功率的DC电机相对效率高,质量轻一半左右。如果采用矢量调节,可以获得与DC电机相当的可控性和更宽的调速范围。交流异步电机因其效率高、比功率高、适合高速旋转等优点,是大功率电动汽车中应用最广泛的电机。

       但在高速旋转的情况下,电机转子发热严重,工作时需要保证电机的冷却。同时,异步电机的驱动和调节系统非常复杂,电机本身的成本也偏高。此外,逆变器在运行时需要提供额外的无功功率来建立磁场。因此,与永磁电机和开关磁阻电机相比,异步电机的效率和功率密度较低,不是能效的最佳选择。

       异步电机在美国应用广泛,这也是人为与路况有关。在美国,高速公路已经具备了必要的规模。除了大城市,大部分汽车都是以必要的高速连续行驶,所以能高速旋转、高速时效率高的异步电机被广泛使用。

       3.交流异步电动机

       根据定子绕组电流波形的不同,永磁电机可分为两种类型。一种是无刷DC电机,具有矩形脉冲波电流;另一种是永磁同步电机,它有正弦波电流。这两种电机在结构和工作原理上相似。转子基本都是永磁体,缩短了励磁带来的损耗。定子配有绕组,通过交流电产生扭矩,因此冷却比前一年更容易。由于这种电机不需要安装电刷和机械换向结构,工作时不会产生换向火花,运行安全可靠,维修方便,能量利用率高。

        style="text-align:center;">

       永磁电机的调节系统比交流异步电机简单。但是由于永磁材料本身的限制,转子的永磁体在高温、振动、过流的情况下会引起退磁,所以永磁电机在复杂的工况下与去年同期相比很容易损坏,所以这一块需要进一步开发和改进。

       而且永磁材料价格较高,所以整个电机及其调节系统的成本较高。目前只有稀土资源丰富的中国比较倾向于使用永磁电机的电动汽车驱动方案。和日本、欧洲一样,永磁电机也需要使用轻稀土永磁材料,直接改用不需要稀土材料,但对调节器设计要求较高的开关磁阻电机。

       4.开关磁阻电机

       开关磁阻电机作为一种新型电机,与其他类型的驱动电机相比,结构最简单。定子和转子是由普通硅钢片制成的双凸极结构。转子上没有绕组,定子装有简单的集中绕组。它具有结构简单牢固、可靠性高、重量轻、成本低、效率高、温升低、维修方便等优点。而且它具有DC调速系统可控性好的优良特性,同时满足恶劣环境下客观条件的要求,非常适合作为电动汽车的驱动电机。

       然而,开关磁阻电机具有转矩波动大、位置检测器和非线性系统的特点,磁场呈跳跃旋转,调节系统复杂。它会对DC电源产生很大的脉冲电流。此外,开关磁阻电机是双凸极电机,不可避免地存在转矩波动,噪声是开关磁阻电机最关键的缺点。

       然而,最近的研究表明,通过合理的设计、制造和调整技术,可以完全抑制开关磁阻电机的噪声。目前,日本对开关磁阻电机的研究相当深入。日本制造的开关磁阻电机也广泛应用于电动汽车、家用电器等行业。现在国内一些厂商也逐渐关注这款电动车驱动电机未来的发展方向。

       为新能源汽车创造高效的驱动电机

       基于对电机和电动车行业的深入探索和长期积累,致远电子在MPT系列电机测试系统&mdash上成功集成新能源汽车专用测试项目;&mdashMAP和进一步的能量反馈测试为广大电动汽车电机设计人员提供了优秀的测试排除方法。

       1.地图图

       根据GB/T18488-2015《电动汽车驱动电机系统测试规范》,需要用MAP图对新能源汽车驱动电机进行测试,获得电机的效率特性和高效区分布。实际测试结果如下:

       在图中,横轴是转速,纵轴是扭矩,颜色代表副的效率。它代表了电机在不同工作区域(转速和扭矩)的效率特性分布,橙红色部分是电机的高效区域。高效区分布越广,电机在各种工况下运行越省电。

       致远电子MPT电机测试系统内置MAP自动测试功能,可根据用户预设的加载条件,自动调整负载和被测电机在相应工况下的负载,获得不同工况下的效率。最后将海量的测试数据整合成MAP图,可以直观地为用户分析电机的效率特性和高效区的分布。

       2.进一步的再生能量反馈测试

       同样,根据GB/T18488-2015《电动汽车驱动电机系统试验规范》,需要做好新能源汽车驱动电机的再生能量回馈试验。本次测试的目的是考虑驱动电机在制动时,即在发电机状态下运行时,是否能正常实现电能的反馈,同时评估电机的真实能耗。

       致远电机MPT电机测试系统针对驱动电机的再生能量反馈测试,借助内置的MDA电机和驱动器分析仪的集成功能,可以灵活地实时集成电机调节器的输入端,从而准确捕捉电机在制动时的反馈能量值。

       同时,致远电机根据电机调节器与动力电池之间的DC充放电特性,专门设计了充放电积分功能,可以在采样率周期内实时积分电机调节器输入端的电信号,即使电机在电机状态和发电机状态之间快速切换,也能捕捉一段时间内电机与动力电池之间的能量传递状态。

       好了,今天,边肖汽车的朋友们简要介绍的电动汽车电机有这么多不同之处。不知道小伙伴们听了边肖汽车的简介后,对电动车电机的差异有没有更好的了解。希望边肖汽车的简介能对朋友们有所帮助。如果你想了解更多的知识,那就关注这个网站。边肖车在这里等你!

       百万购车补贴

ups是一种什么设备

       UPS分在线式和离线式 2种,确定你的是哪种,

       可以在控制面板里调试。

       UPS知识速成

       ————————————————————1.UPS是什么?

       UPS是不间断电源(uninterruptible power system)的英文简称,是能够提供持续、稳定、不间断的电源供应的重要外部设备。

       从原理上来说,UPS是一种集数字和模拟电路,自动控制逆变器与免维护贮能装置于一体的电力电子设备;

       从功能上来说,UPS可以在市电出现异常时,有效地净化市电;还可以在市电突然中断时持续一定时间给电脑等设备供电,使你能有充裕的时间应付;

       从用途上来说,随着信息化社会的来临,UPS广泛地应用于从信息采集、传送、处理、储存到应用的各个环节,其重要性是随着信息应用重要性的日益提高而增加的。

       ————————————————————2.UPS分哪些种类?

       UPS按工作原理分成后备式、在线式与在线互动式三大类;

       其中,我们最常用的是后备式UPS,如四通HO系列与SD系列,它具备了自动稳压、断电保护等UPS最基础也最重要的功能,虽然一般有10ms左右的转换时间,逆变输出的交流电是方波而非正弦波,但由于结构简单而具有价格便宜,可靠性高等优点,因此广泛应用于微机、外设、POS机等领域;

       在线式UPS结构较复杂,但性能完善,能解决所有电源问题,如四通PS系列,其显著特点是能够持续零中断地输出纯净正弦波交流电,能够解决尖峰、浪涌、频率漂移等全部的电源问题;由于需要较大的投资,通常应用在关键设备与网络中心等对电力要求苛刻的环境中;

       另外四通、APC等厂商还提供在线互动式UPS,同后备式相比较,在线互动式具有滤波功能,抗市电干扰能力很强,转换时间小于4ms,逆变输出为模拟正弦波,所以能配备服务器、路由器等网络设备,或者用在电力环境较恶劣的地区;尤其四通MD系列的UPS,价格又远低于在线式,是应该向用户大力推荐的一种更好的选择。

       ————————————————————3.为什么要配备UPS?

       据IDC统计,全部电脑故障的45%是由电源问题引起的;在中国,大城市停电的次数平均为0.5次/月,中等城市为2次/月,小城市或村镇为4次/月,电网存在至少九种问题:断电、雷击尖峰、浪涌、频率震荡、电压突变、电压波动、频率漂移、电压跌落、脉冲干扰;因此从改善电源质量的角度来说给电脑配备一台UPS是十分必要的。

       另外,精密的网络设备和通信设备是不允许电力有间断的,以服务器为核心的网络中心要配备UPS是不言而喻的,即使是一台普通电脑,其使用三个月以后的数据文件等软件价值就已经超过了硬件价值,因此为防止数据丢失而配备UPS也是十分必须的。

       ————————————————————4.我应该配备什么样的UPS?

       根据设备的情况、用电环境以及想达到的电源保护目的,可以选择适合的UPS;例如对内置开关电源的小功率设备一般可选用后备式UPS,在用电环境较恶劣的地方应选用在线互动式或在线式UPS,而对不允许有间断时间或时刻要求正弦波交流电的设备,就只能选用在线式UPS。

       四通UPS根据不同情况提供了四种解决方案:

       PC系统电源解决方案

       商用桌面电源解决方案

       经济型小型系统解决方案

       关键设备与网络中心解决方案

       ————————————————————5.我应该配备多大功率的UPS?

       首先要确定您的设备是多大功率的,一般来讲普通PC机或工控机的功率在200W左右,苹果机在300W左右,服务器在300W与600W之间,其他设备的功率数值可以参考该设备的说明书。

       其次应了解UPS的额定功率有两种表示方法:视在功率(单位VA)与实际输出功率(单位W),由于无功功率的存在所以造成了这种差别,两者的换算关系为:视在功率*功率因数=实际输出功率

       后备式、在线互动式的功率因数在0.5与0.7之间,在线式的功率因数一般是0.8。

       给设备配UPS时应以UPS的实际输出功率为匹配的依据,有些经销商有意或无意会混淆(VA)与(W)的区别,这点要提请用户注意。

       ————————————6.UPS的"集中式"与"分散式"配备方式有什么区别?

       如果需要配UPS的设备较多,您可以采用"集中式"或"分散式"两种配备方式;所谓"集中式",就是用一台较大功率的UPS负载所有设备,如果设备之间距离较远,还需要单独铺设电线,大型数据中心、控制中心常采用这种方式,虽然便于管理,但成本较高。

       "分散式"配备方式是现在比较流行的一种配备方式,就是根据设备的需要分别配备适合的UPS,譬如对一个局域网的电源保护,可以采取给服务器配备在线式UPS,各个节点分别配备后备式UPS的方案,这样配备的成本较低并且可靠性高。

       这两种供电方式的优缺点如下表:

       集中供电方式 便于管理 布线要求高 可靠性低 成本高

       分散供电方式 不便管理 布线要求低 可靠性高 成本低

       UPS的配备需要较专业的知识,请咨询专业人士,他们会为您设计合理的配备方案。

       ————————————————————7.为什么UPS一定要买名牌?

       UPS产品的功能在于保障,对用户而言UPS常常是保护设备与数据安全的最后防线,相比其他产品"可靠性与品质"对UPS具有更重要的意义,而惟有长期建立起来的名牌产品才能有这样的实力。

       中国目前的UPS市场十分繁荣,国际知名的品牌基本上都已进入中国,如来自欧洲的梅兰日兰,来自美国的爱克赛、APC等,洋品牌在技术上有一定优势,同时价格也较为昂贵,其主要市场份额集中在中大功率UPS市场(10KVA以上);上世纪九十年代以来,国内一些优秀品牌在UPS市场异军突起,凭借在技术上的不断追求与本土化的生产服务优势,取得了令人瞩目的成绩,已经成为中小功率UPS市场的主力军;作为唯一推出自有品牌UPS的著名IT厂商,四通UPS便是其中的杰出代表。

       国内国外的名牌产品都是您可以信赖的选择,区别在于性能价格比的差异,但如同其他产品一样,UPS市场也是良莠不齐,存在许多鱼目混珠的假冒伪劣产品,一般都打着山特的旗号,是广东、江浙等地的地下工厂生产的仿冒品,这些UPS的特点是偷工减料质次价低,品质与服务毫无保障,仅凭低价吸引用户,理智的用户应拒绝低价的诱惑,把品牌当成选择UPS的首要因素。

       ——————————————————8.UPS备用时间的长短是由什么决定的?

       是由UPS的储能装置决定的,现在的UPS一般都用全密封的免维护铅酸蓄电池作为储能装置,电池容量的大小由"安时数(AH)"这个指标反映,其含义是按规定的电流进行放电的时间。相同电压的电池,安时数大的容量大;相同安时数的电池,电压高的容量大,通常以电压和安时数共同表示电池的容量,如12V/7AH、12V/24AH、12V/65AH、12V/100AH。

       后备式UPS一般内置4AH或7AH的电池,其备用时间是固定的;在线式与在线互动式UPS有内置7AH电池的标准机型,也有外配大容量电池的长效机型,用户可以根据需要实现的备用时间而确定配备多大容量的电池。

       蓄电池是UPS的重要组成部分,占有很大的价值比重,并且其质量的好坏直接关系到UPS的正常使用,所以应慎重选择有质量保证的正牌蓄电池。

       ————————————————————9.使用UPS有哪些注意事项?

       1)UPS的使用环境应注意通风良好,利于散热,并保持环境的清洁。

       2)切勿带感性负载,如点钞机、日光灯、空调等,以免造成损坏。

       3)UPS的输出负载控制在60%左右为最佳,可靠性最高。

       4)UPS带载过轻(如1000VA的UPS带100VA负载)有可能造成电池的深度放电,会降低电池的使用寿命,应尽量避免。

       5)适当的放电,有助于电池的激活,如长期不停市电,每隔三个月应人为断掉市电用UPS带负载放电一次,这样可以延长电池的使用寿命。

       6)对于多数小型UPS,上班再开UPS,开机时要避免带载启动,下班时应关闭UPS;对于网络机房的UPS,由于多数网络是24小时工作的,所以UPS也必须全天候运行。

       7)UPS放电后应及时充电,避免电池因过度自放电而损坏。

       ————————————————————10.四通UPS有什么优势?

       首先是品牌上的优势,作为国内高科技产业的先驱,"四通"代表着深厚的科技底蕴、严谨的经营思想与不折不扣的承诺;

       其次四通UPS的产品线丰富,能提供各种解决方案,产品的性能价格比高,并且在全国范围内建立了完善的售后服务体系;自成立以来,遵循"高档产品、中档价格,以性能、品质与服务去赢得客户"的市场战略,重视合作伙伴的利益,以用户价值最大化为原则,四通UPS赢得了各界用户的信任,成为个人电脑、网络中心等不可或缺的"贴身保镖",数十万用户遍布企事业单位与家庭等各个领域。

       ———————————11.新一代在线式UPS—四通PS系列的性能有什么优势?

       PS系列是光华四通汇集最新技术研发成功的智能化纯在线式UPS,同传统工频UPS、在线互动式UPS相比,具有高质量、高可靠、高指标、多功能等特点,是新一代全数字化UPS。

       PS系列的工作原理图

       一.PS系列的高频化优势

       首先,PS系列UPS的输入部分取消了用于与市电隔离的工频变压器 或为降压用的自耦变压器,而采用SPWM技术实现整流高频化(AC/DC)。一方面提高了市电电压允许变化范围;另一方面在控制技术中采用数字信号处理器(DSP)控制,使输入电流正弦化,并与市电电压同相,从而实现UPS高输入功率因数(PF≈1),消除对市电的谐波“污染”,达到环保目的,是一款绿色UPS,同时大副度减少无功损耗,明显降低了运行成本。

       其次,抛弃了传统的逆变输出工频变压器,用高频变压器来实现UPS与市电的隔离,不仅噪音低,而且效率高,在UPS的输出级逆变控制电路中采用正弦波直接反馈技术,使其调节高速化,远远优于传统的模拟反馈技术,再加上小的输出滤波器和20kHz以上的SPWM调制,使UPS动态响应特性非常好,而且输出的正弦波非常纯净光滑。

       另外,在逆变保护电路中采用性能优良的过滤保护技术,使逆变器不仅具有较强的过载功能,,而且具有强有力的自身保护;PS系列UPS内部的蓄电池组也采取高频变换方式充电,当市电停电,UPS转换为由蓄电池给逆变器供电时亦采取高频变换降压方式(DC / DC)实现。

       二.PS系列的智能化优势

       UPS的智能化包括系统运行状态自动识别和控制、系统故障自诊断、蓄电池自动监测管理、智能化内部信息检测与显示等。

       在系统运行状态识别与控制方面,通过内部传感器和状态逻辑及时识别系统所处的运行状态,判定系统运行程序和运行是否正常,有效地防止了系统的误操作对系统自身和负载所带来的危害,提高了UPS的可靠性。

       UPS智能化的另一个方面是通过运行于PC机内的监控软件实现的,通过RS232接口将UPS与PC机串口连接,并在PC机上运行UPS的监控软件,由PC机定时发送查询指令,UPS则在规定的时间内返回运行参数信息,再由PC机进一步对UPS的运行状态、故障的具体部位等进行判断,并在必要时对UPS发出指令进行干预和提醒维护人员,并在UPS供电时间结束前自动中止计算机或局域网的运行,并将现场信息自动存盘。

       三.PS系列的网络化优势

       在大量引进微处理监控技术的基础上,四通PS系列能在UPS和计算机网络之间建立起双向通信调控管理功能,把UPS当作广域网络的一个独立节点并装上通讯适配器,给UPS分配独立的IP地址。这样,网管员或被授权人可在网络的任何地方通过网络像管理计算机一样对UPS的情况进行实时远程监控,利用这种控制功能用户可在计算机网络终端上实时监控UPS的运行参数(例如:输入、输出的电压、电流和频率,UPS电池组的充电、放电和电压值的显示,UPS的输出功率及有关的故障、报警信息)。此外,用户还可在计算机网络终端上对UPS的输出执行定时的自动开机、自动关机操作,有序的关机操作将确保用户的软件和数据的安全可靠。

       总之,四通PS系列UPS使用MOSFET及IGBT功率元件,成功地实现了高频化、小型化与高效率,也延长了蓄电池的使用寿命,而网络智能化技术不仅提供完全可靠的网络电源管理,也为节能提供了一种最佳的方案。可以说四通PS系列顺应了最新的UPS技术发展趋势,是一款在性能价格上极具竞争力的产品,必将在中国的企业级UPS市场上取得令人瞩目的成绩。

       ——————————————————————12.蓄电池的容量是什么含义?

       一般用20小时放电率(C10)的安时数代表电池额定容量的大小,即在25℃下以恒定电流放电20小时至终止电压(1.75V/单格),该电流的20倍即为电池的容量,一般用AH数表示。例如,12V/100AH的电池是指该电池能够以5A(0.05C)的电流恒定放电至终止电压10.5V,可连续放电20小时。另外要注意,电池放电时间与放电电流不是线性关系,如100AH电池以100A的电流放电支持不了1个小时,只有数十分钟;而以1A的电流放电,则会超出100小时(不推荐如此方式放电)。

       ——————————13.标准型UPS是否可以直接外接电池作长效型UPS使用?

       不适合,由于标准型UPS设计的充电电流较小,另外受散热条件的限制,如作长效型UPS使用,一方面达不到使用目的,另一方面也容易对UPS、电池的使用造成不良影响,甚至于损坏。

       —————————————————14.如何延长不间断电源系统的供电时间?

       延长不间断电源系统的供电时间有两种方法:

       1. 外接大容量电池组:可根据所需供电时间外接相应容量的电池组,但须注意此种方法会造成电池组充电时间的相对增加,另外也会增加占地面积与维护成本,故需认真评估。

       2.选购容量较大的不间断电源系统:此方法不仅可减少维护成本,若遇到负载设备扩充,较大容量的不断电系统仍可立即运作。

       ———————————15.常见的电力问题有哪些?又有什么不同的解决方式?

       有一种常见的误解,认为我们使用的市电,除了偶尔发生的断电事故,是连续而且稳定的,其实不然。市电系统作为公共电网,上面连接了成千上万各种各样的负载,其中一些较大的感性、容性、开关电源等负载不仅从电网中获得电能,还会反过来对电网本身造成影响,恶化电网的供电品质。另外意外的自然和人为事故,如地震、火灾、雷击、输变电系统短路等,都会危害电力的正常供应,从而影响负载的正常工作。根据电力专家的测试,电网中经常发生并且对电脑和精密仪器产生干扰或破坏的问题主要有以下几种:

       1、电涌(power surges):指输出电压有效值高于额定值110%,而且持续时间达一个或数个周期,电涌主要是由于在电网上连接的大型电气设备关机时,电网因突然卸载而产生的高压。

       2、高压突波(high voltage spikes):指峰值达6000V,持续时间从万分之一秒至二分之一周期(10ms)的电压,这主要是由于雷击、电弧放电、静态放电或大型电气设备的开关操作而产生。

       3、暂态过电压(switching transients):指峰值电压高达 20000V,但持续时间界于百万分之一秒至万分之一秒的脉冲电压,其主要原因及可能造成的破坏类似于高压突波,只是在解决方法上会有区别。

       4、电压下陷(power sags):指市电电压有效值介于额定值的80%至85%之间的低压状态,并且持续时间达一个到数个周期,大型设备开机、大型电动机启动或大型电力变压器接入都可能造成这种问题。

       5、噪声干扰(electrical line noise):指射频干扰(RFI)和电磁干扰(EFI)以及其它各种高频干扰,马达的运行、继电器的动作、马达控制器的工作、广播发射、微波辐射、以及电气风暴等,都会引起噪声干扰。

       6、频率飘移(frequency variation):系指市电频率的变化超过3Hz以上,这主要是由于应急发电机的不稳定运行,或由频率不稳定的电源供电所致。

       7、电压过低(brownout):指市电电压有效值低于额定值,并且持续较长时间,其产生原因包括:大型设备启动和应用、主电力线切换、启动大型电动机、线路过载等。

       8、市电中断(power fai1):指市电中断并且持续至少两个周期到数小时的情况,其产生原因有:线路上的断路器跳闸、市电供应中断、电网故障等。

       针对以上各种电力问题,有以下不同的几种解决方式,其效果如下表所示:

       ○代表有较佳保护 △代表有限或视状况保护 ×代表没有保护

       ———————————16.UPS蓄电池的正确使用与维护

       在使用不间断电源系统的过程中,人们往往片面地认为蓄电池是免维护的而不加重视。然而有资料显示,因蓄电池故障而引起UPS主机故障或工作不正常的比例大约为1/3。由此可见,加强对UPS电池的正确使用与维护,对延长蓄电池的使用寿命,降低UPS系统故障率,有着越来越重要的意义。除了选配正规品牌蓄电池以外,应从以下几个方面入手正确地使用与维护蓄电池:

       一、保持适宜的环境温度。影响蓄电池寿命的重要因素是环境温度,一般电池生产厂家要求的最佳环境温度是在20-25℃之间。虽然温度的升高对电池放电能力有所提高,但付出的代价却是电池的寿命大大缩短。据试验测定,环境温度一旦超过25℃,每升高10℃,电池的寿命就要缩短一半。目前UPS所用的蓄电池一般都是免维护的密封铅酸蓄电池,设计寿命普遍是5年,这在电池生产厂家要求的环境下才能达到。达不到规定的环境要求,其寿命的长短就有很大的差异。另外,环境温度的提高,会导致电池内部化学活性增强,从而产生大量的热能,又会反过来促使周围环境温度升高,这种恶性循环,会加速缩短电池的寿命。

       二、定期充电放电。UPS电源中的浮充电压和放电电压,在出厂时均已调试到额定值,而放电电流的大小是随着负载的增大而增加的,使用中应合理调节负载,比如控制微机等电子设备的使用台数。一般情况下,负载不宜超过UPS额定负载的60%。在这个范围内,电池的放电电流就不会出现过度放电。

       UPS因长期与市电相连,在供电质量高、很少发生市电停电的使用环境中,蓄电池会长期处于浮充电状态,日久就会导致电池化学能与电能相互转化的活性降低,加速老化而缩短使用寿命。因此,一般每隔2-3个月应完全放电一次,放电时间可根据蓄电池的容量和负载大小确定。一次全负荷放电完毕后,按规定再充电8小时以上。

新势力2020:一种叫许氏,一种叫其他

       文|李妍

       没什么事情是用钱砸不来的,如果有,那就多砸几次。这句话在我看来,无比地适用恒大这家企业。

       第一次知道恒大,是因为足球,后来才发现它是以房地产起家的企业。再后来,我又知道了它还卖矿泉水、卖养老健康品;做金融、做旅游;最后甚至造起了车。或许恒大在某些领域并无优势,但它用实际行动告诉我们:没经验那就用钱买有经验的企业;没技术那就用钱买技术;没人才那就用钱来吸引人才……总而言之,一直“买买买、合合合、大大大”的恒大不怕自己没有,就怕钱也买不到。

       许家印曾说过,恒大在选择产业上,一定是非常大的产业。果然,大佬向来都是说到做到。恒大选择的每一个领域,体量都很庞大,动辄都是几十万亿的市场。而且恒大的每一个项目,似乎都能以雷霆之势打开。

       就拿造车来说,短短一年时间,几乎就完成了销售、电池、整车制造、电机、超跑研发、工厂用地于一体的汽车体系布局。新能源汽车领域,恒大仅用了半年多时间便迅速搭建出了一条新能源汽车产业链,并投入了上千亿元建设生产研发基地。

       我突然觉得,似乎只要是许大佬瞄准的市场,就没有他拿不下的。

       作为一家地产公司,2020年疫情下的前两个月,恒大依旧是如火如荼,朋友圈不是被它的7.5折刷屏,就是被它的无理由退房、5000元订房政策所刷屏。据中国恒大公告数据显示,恒大2月份的合约销售金额约为人民币447.3亿元,较去年同期增长约107.8%;合约销售面积约为513.8万平方米,较去年同期增长约153.8%。

       相比之下,恒大造车的信息就低调了许多,至少在前两个月基本没有什么大的动静。直到3月的日内瓦车展上(当日唯一一款被允许现场发布的产品),恒大科尼赛克新能源混合动力超跑Gemera发布,整个市场的目光一下就聚焦了。

       据悉,Gemera限量生产300辆,起售价高达138万欧元(折合人民币约1100万元)。亮相当天有一名瑞士神秘富豪一口气就购买了30辆。贫穷还是限制了我的想象力,难道该富豪是要一个月一天一辆的节奏吗?

       亮相不久,300台Gemera就售空了。看到这个新闻,我的脑子里下意识是两个信息点:第一,有钱人比我想的还要多。第二,Gemera是受市场肯定的。

       这样一款好车,当然是受市场欢迎的。与顶级厂商科尼赛克合作、双门四座超跑、百公里加速1.9秒、20秒内可提速至400Km/h、续航里程1000公里、使用革新性可再生液体燃料、2.0T双涡轮三缸发动机、综合最大功率1724马力……随便拿出一个参数,也说得上是惊艳的。

       Gemera的出现,似乎佐证了市场里“恒大能不能造好车”这一问题,恒大新能源汽车集团也据此提出恒大已拥有制造世界顶级新能源超级跑车的能力。我们不得不说,恒大造车的技术是不强,但它资源整合能力很强。

       自2018年宣布进军高科技产业以来,恒大在新能源汽车领域频频出手。同年9月,恒大投入144.9亿元入股广汇集团,拥有了全球最大的汽车经销商;告别了贾跃亭的FF仲裁后,2019年1月15日,恒大以9.3亿美元成功并购国能电动汽车瑞典有限公司,即NEVS的51%股权,继承瑞典萨博的整车研发和制造技术;第二天恒大又爆出设立了建立充电桩公司的消息。

       同月24日,恒大又以10.6亿元入股动力电池企业卡耐新能源,在新能源汽车产业链上完成一个又一个的重要布局。之后5天,也就是1月29日,恒大健康发布公告称,将斥资1.5亿欧元(约合人民币11.5亿元)入股科尼赛克,随后将斥资1.5亿美元(约合人民币10.1亿元)与科尼赛克成立合资项目公司,其中恒大子公司NEVS持股65%。

       与科尼赛克的合作为何分为了两步。据悉,是恒大将通过旗下的NEVS花1.5亿欧元入股SOP,而SOP的主要资产就是持有的科尼赛克85.1%股份。随后,NEVS还将斥资1.5亿美元与科尼赛克(将出资7,000万美元)合资成立项目公司。这意味着恒大将获得科尼赛克的若干知识及工业产权的许可。所以说,Gemera这款车,恒大不只是“买”了一个冠名权,它是实打实恒大公司自己“造”出来的。

       但想要在新能源汽车领域占取造车优势,恒大还必须落实到电动汽车最核心的“三电”系统:驱动电机、动力电池、整车电控。也正是因为这点,收购卡耐新能源后,恒大又将手伸向了“三电”系统。轮毂电机技术代表了电机电控领域的最先进技术,被业界认为是电动车行业的下一个爆点,所以,恒大就瞄准了市场上既掌握核心技术又具备生产条件的荷兰e-Traction。

       2019年3月,恒大投资5亿元收购湖北泰特机电有限公司70%股权,后者100%持有荷兰e-Traction公司股份。因此,恒大也控股e-Traction。引入欧洲轮毂电机驱动技术,意味着恒大造车电机电控方面的绝对优势。

       单单获得商用车轮毂电机驱动技术,恒大还觉得不够,所以又打起了乘用车轮毂电机技术的主意。同年5月,恒大全资收购轮毂电机公司英国Protean。

       不过我上面也说到了,恒大不怕没技术,就怕有的技术买不来。对此,恒大换了一种打法,那就是合作。比如和德国hofer动力总成集团组建合资公司,拥有了三合一动力总成技术和知识产权;与德国BENTELER集团和FEV集团合作引进3.0底盘架构知识产权,并与15位世界知名汽车造型设计专家签约,成立恒大新能源汽车造型设计专家委员会。

       拥有了大多数先进技术之后,恒大接着又在生产、充电等方面下功夫。去年6月,恒大在广州南沙区投资1600亿建设新能源汽车三大基地等项目;没过几天,又与沈阳市政府签署合作协议,投资1200亿在沈阳建设新能源汽车三大基地项目;7月,恒大与国家电网共同出资1.8亿元成立国网恒大智慧能源服务公司,致力于社区充电等业务……

       也就是说,仅过去的1、2年时间里,恒大就通过收购或者合作拥有了德国hofer三合一动力总成技术、荷兰e-traction、英国Protean的轮毂电机技术和德国Benteler与FEV集团的3.0底盘架构技术……还布局了各大生产基地以及后续的充电业务。

       一顿操作猛如虎之后,恒大基本解决了制约新能源汽车行业发展的几大瓶颈。首先,并购NEVS恒大具备了整车研发能力;其次,通过卡耐恒大拥有了领先的电池技术;接着,通过收购泰特机电、荷兰e-Traction,恒大有了电机技术;再者,参股广汇集团的恒大打通了供销体系;最后,和国家电网合作又解决了将来的充电难题……真可谓是,起步即高峰啊。

       我不得不承认,钱虽然不是万能的,但绝对是解决问题的神助攻。不是每一家造车新势力都能像恒大一样“出手阔绰”。而且,能在短时间内高频率地达成收购或合作等动作,说明许家印早在之前就已经开始部署了。这样的前瞻性和格局,不愧是许家印“要么不做,要做就要做大做强做成功”的风格。

       在这一点上,我个人觉得许家印和李书福的造车思维有着异曲同工之妙。

       虽说有些地方性质不太一样,但两人都是从上往下打品牌。当年的吉利只是一个较为低端的汽车品牌,借着金融危机收购沃尔沃之后一步步借力提升品牌力,之后也是不断走在收购、入股的道路上。如果说让吉利一层一层地布局产品链来从低端往高端走,那么这个过程肯定要比现在久,成不成功还得另说。

       借力打力也是个好法子不是吗。而恒大,在去年推出首款量产车型——国能93而被全网喷“拿出一款没咋改”的纸老虎车型之后,快速发布了恒大恒驰汽车品牌。但由于之前的不走心,恒大造车在行业里还是个“摸不着头脑”的事儿。如今,直接发布新能源超跑Gemera,也不失为一计高招。Gemera使用的电池是恒大研发生产的最新一代产品,逆变器则由恒大控股的荷兰e-Traction公司研发生产,这充分展现了恒大的全产业链整合优势。

       任何品牌都是有其光环的,品牌溢价很重要。一个品牌,需要打造出“高级”的品牌形象,至少在消费者心里,是要相信这家车企是能够造出好车的。而像之前国能93那样的打法,从低端向高端进击,难度大成功率还低。

       当初的恒大冰泉就是这样。许大佬“嫌”市面上的水不够高端,想要自己做出一款高端品牌的饮用水。项目开始,恒大依旧本着自己的商业“原则”,猛“砸钱”。后面,里皮、郎平、菲戈、耶罗都成了恒大冰泉的全球推广大使。但实际上,恒大冰泉的设计和广告营销又做得并不高端。同时它这个3.5元的价格又定得很尴尬,在当时的行情里来讲,是偏高的。偏离了大众消费者的心理价位,所以恒大冰泉在当时并没有打响名气。

       再加上变换太快的广告、大降价的处理,让恒大冰泉失去了最好的市场时机。再想做回高端,基本可以说是“无力回天”了。于是到了2016年,这个出身豪门的产品终究是被卖了。

       品牌是存在固化性质的,恒大起初高调进入市场却没有给自己定好位,后面再想站起来,可就比刚入市更难了。车市也一样,可以是德系高品质般的正面固化形象,也可以是法系“不人性化”般的负面固化形象,所以说车企定下的“第一印象”也很重要。一旦形成了“刻板印象”,想要转身,可就难了。

       如今,与科尼赛克的合作,或者说与世界各大“牛人企业”合作,也是恒大在向市场发声:恒大虽然是汽车界的“门外汉”,但恒大帮手多,学来的技术也同样强。

       正如在去年11月12日举行的“恒大新能源汽车集团全球战略合作伙伴峰会”上,许家印说的一句话:“我们把能买的核心技术、能买的企业都买了,在造车方面‘一无所有’的恒大要走一条不寻常的路,也就是换道超车”。

       基于现在全球供应链较为成熟的基础下,现在的造车越来越像造手机了。技术往往不是最欠缺的,可贵的就是资源整合的能力。恒大混合了全球先进的供应商,也就整合了整体造车技术,更为重要的是,恒大有着强大的资金链。

       但我想,搭建完备的产业链并不是许大佬的目标。恒大真的只是“人傻钱多只会买”吗?不,恒大可一点也不傻,人家聪明着呢。许家印真正想要的,是足以打动市场的硬核技术。所以他才会尽力在技术领域重金买入,买不到了再考虑合作。

       造车,有两个决定其生死存亡的重要的因素,一是资金,二就是技术。现在看来,恒大两个都不缺。虽然新能源造车企业中,败局者多于生存者,就连造车头部企业蔚来也是几度徘徊在亏损、破产的生死边缘,恒大也免不了的会有亏损。但这些对于刚入局的恒大来说,也都只是“交学费”的过程,它们也会继续投入上亿资金,恒大在造车上计划3年投资450亿元,2019年投资200亿元,2020年投资150亿元,2021年投资100亿元。许家印的目光,放在未来的几年之后呢。

       许家印曾公开表示,“恒大的多元化布局正式结束,五年内不再拓展新领域。”一般人,还真说不出这句话。目前,恒大已经形成了地产、健康、文旅、新能源汽车四大产业板块,个个都是万亿市场的项目,恒大的多元化战略也慢慢进入收割期。

       许家印曾预测,汽车产业可能5-10年是几万亿的规模,在全世界是几十万亿的大产业。从国家宏观政策层面来看,2019年12月3日,工信部发布《新能源汽车产业发展规划(2021-2035年)》(征求意见稿)时就提出,到2025年,我国新能源汽车新车销量占比达到25%左右。按照这个销售目标,预计2025年新能源车销量将达到600万辆以上,市场空间还是较大的。

       当前的汽车产业正在经历洗牌阶段,新能源汽车更是有着无限冲击的空间,恒大这时候大投入的抢先,将来一定会带恒大跨入全新增速跑道的。

       许大佬还放话将来的3-5年内要成为世界第一大新能源汽车集团。产能规划上,此前恒大将首期规划定在了100万辆产能,力争10年内达到产能500万辆,与科尼赛克合作年生产100辆超跑。超跑暂且不说,100万辆的产能是个什么概念,前几天特斯拉的第100万台汽车刚刚下线。这个数字,它们整整用了12年。

       写到这,我又想到了当时恒大进军矿泉水市场的场景,恒大也是给自己制定了第一年即达100亿,3年达到300亿的“膨胀”目标。为什么说它膨胀,因为在当时,整个矿泉水行业也就300多亿的销售额,恒大却计划在用3年在中高端市场催活超过整个行业大佬们的总量。

       这像极了新年伊始给自己立flag的我们,立不立是一个踌躇满志的仪式感,能不能成就另说了。商业市场也一样,过于庞大的flag、扯着裆迈开的步子,必然引发决策上的偏误。

       如今,恒大在新能源造车上的调子打得也挺高,但能不能在新能源市场退坡以及新势力竞争激烈、特斯拉又在中国试产站稳脚跟的局面下实现目标,这我不好说。

       但我知道,虽说一系列的“合作贴牌”大大降低了恒大造车的技术难度,但汽车毕竟是一项极为复杂的系统工程,当年也有不少“外行”企业想涉足却落败,比如三星,比如富力地产。要量产出安全性、可靠性兼高性价比的汽车,需要整车厂长期的技术积累和沉淀,这点对于新势力车企来说已经是个不小难度。

       而且恒大作为跨界选手,跨界困境也是随之存在的。进入一个新的市场领域,打开突破口、打出知名度和空间往往比高调进击,重要的多。

       恒大应该吸取以往做市场的经验教训,纵使砸钱砸出了具备引爆市场的条件,在之后的操作上也切莫太急,太忽略消费者的心理诉求。既然选择了入局,那就要好好尊重那个市场的运行规律和规则。

       不然,就算有再厚实的资金储备、再优秀的技术支持,拿不出好作品也都是“竹篮打水一场空”,消费者可不会为国能93那样的产品来买单。

       2020年,是特殊也是关键的一年。恒大离旗下首款新能源汽车“恒驰1”的量产仅剩1年;离许家印提出的“年产100万辆新能源汽车”的目标只剩1-2年。恒大究竟能不能靠“砸钱”来实现“跳级”?或许,让人“摸不着头脑”的“恒大操作”真有可能。

       不要融资,自己开干;有商业套路,有造车天团;有鲜明性格的许家印式的打法,还真是独一无二。纵观新势力造车2020,这种许氏打法不可复制。但这种打法会开创一种新的模式吗?

       或许,只有成功了的打法才能叫模式,许氏有这个机会吗?

       本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

光伏产业未来发展前景

       在“双碳”目标背景下,光伏是一座城市优化能源结构,推动“双碳”建设的重要抓手。

       太阳能光伏产业在将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。未来的能源互联网将在现有电网基础上,通过先进的电力电子技术和信息技术,实现能量和信息双向流动的电力互联共享网络。

       随着光伏发电等波动性电源比例的提高,要求电源侧具备更大的调节能力,分布式储能将得到普及,主动式配电网也将应运而生。太阳能发电和其他可再生能源、储能互补发电,并与负荷一起形成既可并网、又可孤网运行的微型电网,将是太阳能发电的一种新应用形式,既适用于边远农牧区、海岛供电,也适合联网运行作为电网可控发电单元。

       光伏产业的不断深入发展,各行业也借助了光伏的自身优势开展应用,如光伏农业、光伏渔业、光伏水泵、光伏园区、光伏充电桩、光伏智慧路灯等等。

从数字化角度阐述下光伏行业未来发展模式:

       实现大型室外光伏发电时运作状态实时监测,电站负荷情况、设备管控等信息的互联互通。数字孪生不同环境场景下的光伏电站。减少室外光伏发电站运维管控的人为操作成本与危害,实现无人值守的室外光伏电站新形势。

       通过现场取景、卫星图等方式,进行场景搭建,人工摆放向日镜模型,向日镜从发电塔向外扩散排布,真实还原装机分布效果,场景从上往下看就像一朵巨大的向日葵,场景中心为发电塔,镜子作为反射太阳光的媒介,发电塔相当于一个大型的热量吸收器,一次性接收成百上千个向日镜同时折射出的热量再经过热能交换,推动汽轮发动机发电。通过图扑引擎的渲染功能,真实还原发电塔吸收热量的效果。

光热电站信息监测

       通过点击交互场景中的发电塔模型,以二维弹窗形式弹出发电塔相关信息,与后台数据进行联动,接入真实数据,展示发电塔发电情况与发动机运行状态,做到实时监测管理。

光伏电站信息监测

       通过对接数据接口可实现监测各方阵内汇流箱(包括母线电压、机箱温度、电流)数据,当出现告警时,可对模型进行染红闪烁显示,方便运维人员快速定位排查问题,足不出户即可实时查看设备相关指标,可结合算法实现数据分析,短时间内若出现数据异常变化的情况,提前进行告警,提醒相关人员及时做出决策。

       同时接入了箱变(包括箱变油温、电压和电流)、逆变器(包括今日发电量、总有功功率、总无功功率、总功率因素、逆变器效率)、升压站相关数据,全面监测电站运行状况,由于场景比较大,做了点击设备模型视角拉近处理,可更直观的查看设备相关信息。

       以往以节能降碳为主的理念,应该转变为多使用可再生能源。不少太阳能光伏企业已经在发展光储充一体化系统,这和互联网等科技企业的写字楼、车棚、电动汽车的使用等可以有机结合。科技企业还可以参与到与碳中和相关的数字化平台、物联网设备的建设、运营、管理和维护。

       加强政策扶持新能源经济战略,国家相关部委推出太阳能屋顶计划。太阳能屋顶就是在房屋顶部装设太阳能发电装置,利用太阳能光电技术在城乡建筑领域进行发电,以达到节能减排目标。

       采用轻量化三维建模技术, 1:1 高仿真还原光伏工业园区。3D场景将 BIM 楼宇数据叠加到地图场景中,实现 BIM + GIS 的结合展示。

       2D 数据面板数字化展现园区内各区域的运行情况、安全配备、周边动态环境等情况。还支持渲染 3D Tiles 格式的倾斜摄影模型文件。Hightopo实现可交互式的 Web 三维场景,可进行缩放、平移、旋转,场景内各设备可以响应交互事件。

eps消防应急电源的工作模式

       1、EPS消防应急电源市电工作模式

       2、市电异常,电池逆变工作模式

       当市电异常时,蓄电池通过SPWM逆变器逆变出交流电供给输出,通过逆变静态开关切换到输出

       3、手动维修旁路工作模式

       当要求在不断电在线维修时,将合上维修旁路开关,断开关输出开关和旁路开关,这样就将EPS的电路部分和输入、输出完全断开而不会中断用户的输出。

       EPS应急电源的发展 EPS应急电源系统是Emergency Power Supply 的缩写,是满足消防行业的特殊要求的应急电源.当市电出现故障能自动转入到应急工作状态,由电池组经高效逆变提供后备电力供应.它具备手动,自动转换及供专业人员操作的强制启动按钮,超载120%能正常工作,对电池组分段保护智能充电,应急时间要求更长,整机功能更齐备,可靠性更高.EPS可以为您解决许多应急供电的问题,给你的生活带来意想不到的帮助. 在正常的商业电源下EPS为您提供与商业电源相同的或经过稳压调整的电源;当突然停电或商业电源电压超出临界值时,由电池组经过高效率的逆变为你提供电压稳定,频率稳定的电力供应,使您有足够时间的照明和设备运营电力供应,EPS电源为您提供安全,可管理的应急电源系统. 最初出现在市场上应用是为逃生目的沿应急通道的指示灯或应急灯,曾几何时,发挥过多大的作用?不可而知。更由于布点太多而且分散,又没有监控和定期检测,损坏后不能及时修复,在突发事件来临时起不到应急作用。 随着人们观念的转变,安全意识的提高,萌发将集中供电的应急照明电源取代分散的应急灯,应急照明电源是发展的必然趋势。 电力故障常具有突发性,不以人们的意志为转移,即使电网设施再先进,意外的断电也在所难免,尤其当今处于“防恐”时期,应急供电更是十分必要。同时,火灾与停电几乎是孖生兄弟,因此,具备多功能的应急电源EPS便应运而生,它需要同时解决电力保障和消防安全的首要问题。 为了确保某些重大工程的应急供电需要,确保万无一失,科学的、完善的、可靠的应急电源系统便应运而生。这就是由单个应急灯集中照明电源具备电力保障和消防安全的应急电源高可靠的应急电源系统的发展过程。 EPS不等于UPS 从IEC的定义来说,后备式UPS是市电正常时,由市电向负载供电,当市电出现故障时,由电池组提供能量,经逆变器向负载供电。EPS从功能上来说与上述后备式UPS定义符合。但是,说EPS就是后备式UPS,这种说法不科学,有意无意贬低EPS的重要作用。大家知道,常用后备式UPS是小功率范围,保护对象大多为PC机。由于保护对象非重点,而且市场需求量大,技术含量低,价格竞争激烈,冒牌货较多,导致产品质量不高,返修率大,给人们留下不良印象,后备式UPS是可有可无的IT业外设。 而EPS是应急电源,重点在于应急。其真正是“养兵千日,用兵一时”的设备,为了真正应急,可想对EPS的可靠性有很高的期望值。因此,EPS不等于UPS,目前人们对EPS主要存在以下问题: 一、概念误区 1、EPS拓扑设计不是简单的组合 有人认为:EPS(电子部分)=整流/充电器+逆变器+输出转换开关(互投装置)+控制单元等部件就能构成应急电源。不错,EPS的基本单元是由上述部分组成,但是为了满足整机可靠性(MTBF),各基本单元的可靠性如何分配才是最合理呢?从中可以看出:EPSMTBF=(整流/充电器)MTBF +(逆变器)MTBF +(转换开关)MTBF +(控制单元)MTBF 从上式可知,EPS整机的MTBF是由各大部件的MTBF叠加而成,因此EPS整体设计就需要详细研究、分析、计算各大部件的MTBF,提高薄弱部件的MTBF,从EPS整体安全生命周期的需要来配置各大组成部件的安全生命周期。2. EPS生产厂家一哄而上 由于近年来我国UPS市场全面大洗牌,一些小型、杂牌的UPS生产厂家,经受不住市场法则的检验,纷纷面临被淘汰的危险。为了逃避被清洗的命运,抱着一知半解的心态匆忙转产EPS,企图鱼目混珠,祈求解救燃眉之急,引起中国EPS市场出现“一哄而上”的现象。他们没有理解市场真正需要何种EPS,盲目采用各大部件拼凑组合方法来生产,同时为了价格竞争,使用低劣原材料,这样又怎能保证要求高可靠的EPS呢?3. EPS市场混乱的原因 人们越来越清楚地认识到应急电源EPS在生活和生产当中的重要性,但是由于至今仍未有国家标准统一其技术标准和生产规范,是导致中国EPS市场混乱的主要原因,最终的受害者可能是直接用户。 与其对照的IT业中的UPS就大不相同了,不仅有国家明确的国标,而且还有各系统、各行业自己的选型标准。EPS厂家要象UPS厂家一样,为了赢得市场,必须进行优化设计,采用新技术,提高生产效率,降低成本,提高可靠性,满足用户不同要求。只有产品质量不断提高,售后服务不断改进,EPS产品才能获得用户的认可。 二、EPS与UPS的异同1. EPS是UPS的应用发展 在欧美先进国家,由于并网供电,电力充足,同时供电质量良好,加上用电设备规范,不会在电网上造成电网污染,互相干扰。因此,许多场合并不建议使用双逆变在线式UPS,而是推荐使用节能ECO(ECONOMY CONTROL OPERATION)工作状态下的UPS,即平常由市电供应负载,在市电不正常时,再由蓄电池经逆变器逆变输出供电。在欧洲,此类具有节能工作状态的UPS称作CPS(Center Power Supply),广泛采用的原因是:双逆变工作方式的在线UPS,在市电正常时,其ACDCAC的能量转换效率约为90%,而节能工作状态下的UPS(CPS,EPS)在市电正常时,其能量转换效率高达99%,而且并网市电的可用率可达99.99%以上,即只有0.01%的停电机率,因此使用CPS(EPS)供电,其节能效果是非常显著的。同时,EPS的逆变器是处于启动状态,但不输出功率,类似休眠状态,EPS逆变器比UPS的逆变器连续输出功率能大大延长寿命。其实,EPS的高端产品就是休眠状态下的UPS。在市电正常时,EPS除了输电质量不及UPS外,但在市电并网的今天,能满足大部分用电设备的要求。因此,人们关心节电这个永恒的主题以及高可靠性两大因素,大多数情况下EPS是优于UPS的。如果电网质量良好,供电可靠,用电设备规范,在我国许多场合下有可能用EPS取代双逆变在线式UPS,而不是用UPS代替EPS。当然,在某些非常关键的设备,仍需用双逆变在线式UPS。2. EPS与UPS的差别 (1)我国EPS的发展是起源于电网突发故障时,为确保电力保障和消防联动的需要,它能即时提供逃生照明和消防应急,保护用户生命或身体免受伤害,其产品技术要求受公安部消防认证监督,并接受安装现场消防验收。而UPS只是用来保护用户设备或业务免受经济损失,其产品技术要求受信息产业部认证。两者适用的安全规范明显不同,因而具有不同的价值观。 (2)EPS和UPS均能提供两路选择输出供电,UPS为保证供电优质,是选择逆变优先;而EPS是为保证节能,是选择市电优先。当然两者在整流/充电器和逆变器的设计指标上是有差异的。 (3)UPS由于是在线式使用,出现故障可以及时报警,并有市电作后备保障,使用者能及时掌握故障并排除故障,不会对事故造成更大的损失。而EPS是离线式使用,是最后一道供电保障,因而其可靠性设计要求更高,不能简单理解为后备式UPS,否则就把EPS的重要性一笔勾销了。如果EPS在市电故障时,不能通过蓄电池应急供电,则EPS如同虚设,造成的后果将不堪设想。 (4)UPS供电对象是计算机及网络设备,负载性质(输入功率因数)差别不大,所以国标规定UPS输出功因为0.8。而EPS供电对象则是电力保障及消防安全,负载性质为感性、容性及整流式非线性负载兼而有之,其输出功率因数就不能设定为0.8(EPS国标将规定其数值),而且有些负载是停市电后才投入工作的,因而要求EPS能提供很大的冲击电流,EPS需要输出动态特性要好,抗过载能力更强。因此EPS与UPS各组成部分的技术设计指标分配是不同的。 结束语 因此,EPS应急电源的出现和发展是必然,它已迫在眉睫,我们千万不能因为生活的暂时安稳而忽视了它的存在和发展,我们一定要用发展的眼光,用科学的眼光去看待,相信在不久的将来它将会成为人们心中的另一大概念。

汽车上有哪些电力电子器件的运用?

       蛮长的!蛮详细!1、引言

       电力电子技术是研究电力半导体器件实现电能变换和控制的学科,它是一门电子、电力半导体器件和控制三者相互交叉而出现的新兴缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是:

       (1)电力半导体器件的设计、测试、模型分析、工艺及仿真等;

       (2)电力开关变换器的电路拓扑、建模、仿真、控制和应用;

       (3)电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。

       电动汽车(EV)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油包机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了DC/DC和DC/AC的全部变换,是实用价值非常高的运用领域。

       2、混合动力电动汽车简介

       当前世界汽车产业正处于技术革命和产业大调整的发展时期,安全、环保、节能和智能化成为汽车界共同关心的重大课题。为了使人类社会和汽车工业持续发展,世界各国尤其是发达国家和部分发展中国家都在研究各种新技术来改善汽车和环境的协调性。

       电动汽车作为21世纪汽车工业改造和发展的主要方向,目前已从实验开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型号概念车,目的是为了引导世界汽车技术的潮流。

       2.1各种类型电动汽车特点及其发展

       根据所使用的动力源不同,电动汽车大致可分为三类:蓄电波电动汽车或纯电动汽车(BatteryElectricVehicle)、以氢气为能源的燃料电池电动汽车(FuelCellElectricVehicle)和混合动力电动汽车(HybridElectricVehicle)。

       纯电动汽车是单独依靠蓄电池供电的,但目前动力电池的性能和价格还没有取得重大突破,因此,纯电动汽车的发展没有达到预期的目的;

       燃料电池电动汽车具有能量转化率高、不污染环境、使用寿命等不可比拟的优势。但是由于目前燃料电池技术和研究还没有取得重大突破,燃料电池电动汽车的发展也受到了限制。

       混合动力电动汽车是同时采用了电动机和发动机作为其动力装置,通过先进的控制系统使两种动力装置有机协调配合,实现最佳能量分配,达到低能耗、低污染和高度自动化的新型汽车。自1995年以来,世界各大汽车生产商已将研究的重点转向了混合动力电动汽车的研究和开发,日本、美国和德国的大型汽车公司均开发了包括轿车、面包车、货车在内的混合动力电动汽车。

       以作为混合动力电动汽车研发前沿的丰田汽车公司为例,所开发的混合动力电动汽车已达到实用化水平,自1997年所推出的世界上第一款批量生产的混合动力电动汽车Prius开始,其后又在2002年推出了混合动力面包车,该车混合动力系统采用了世纪首次批量生产的电动四轮驱动及四轮驱动力/制动力综合控制系统。2003年,丰田又推出了新一代Prius,也被称为“新时代丰田混合动力系统——THSⅡ”(见图1),节能效果可达到100km油耗不足3L。从2004年开始,丰田公司向欧洲市场推出了一款新的LexusRX型豪华混合动力轿车。丰田公司计划2012年全部采用汽油电力混合发动机,以提高燃油经济性和降低排放污染。

       1、引言

       电力电子技术是研究电力半导体器件实现电能变换和控制的学科,它是一门电子、电力半导体器件和控制三者相互交叉而出现的新兴缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是:

       (1)电力半导体器件的设计、测试、模型分析、工艺及仿真等;

       (2)电力开关变换器的电路拓扑、建模、仿真、控制和应用;

       (3)电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。

       电动汽车(EV)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油包机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了DC/DC和DC/AC的全部变换,是实用价值非常高的运用领域。

       2、混合动力电动汽车简介

       当前世界汽车产业正处于技术革命和产业大调整的发展时期,安全、环保、节能和智能化成为汽车界共同关心的重大课题。为了使人类社会和汽车工业持续发展,世界各国尤其是发达国家和部分发展中国家都在研究各种新技术来改善汽车和环境的协调性。

       电动汽车作为21世纪汽车工业改造和发展的主要方向,目前已从实验开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型号概念车,目的是为了引导世界汽车技术的潮流。

       2.1各种类型电动汽车特点及其发展

       根据所使用的动力源不同,电动汽车大致可分为三类:蓄电波电动汽车或纯电动汽车(BatteryElectricVehicle)、以氢气为能源的燃料电池电动汽车(FuelCellElectricVehicle)和混合动力电动汽车(HybridElectricVehicle)。

       纯电动汽车是单独依靠蓄电池供电的,但目前动力电池的性能和价格还没有取得重大突破,因此,纯电动汽车的发展没有达到预期的目的;

       燃料电池电动汽车具有能量转化率高、不污染环境、使用寿命等不可比拟的优势。但是由于目前燃料电池技术和研究还没有取得重大突破,燃料电池电动汽车的发展也受到了限制。

       混合动力电动汽车是同时采用了电动机和发动机作为其动力装置,通过先进的控制系统使两种动力装置有机协调配合,实现最佳能量分配,达到低能耗、低污染和高度自动化的新型汽车。自1995年以来,世界各大汽车生产商已将研究的重点转向了混合动力电动汽车的研究和开发,日本、美国和德国的大型汽车公司均开发了包括轿车、面包车、货车在内的混合动力电动汽车。

       以作为混合动力电动汽车研发前沿的丰田汽车公司为例,所开发的混合动力电动汽车已达到实用化水平,自1997年所推出的世界上第一款批量生产的混合动力电动汽车Prius开始,其后又在2002年推出了混合动力面包车,该车混合动力系统采用了世纪首次批量生产的电动四轮驱动及四轮驱动力/制动力综合控制系统。2003年,丰田又推出了新一代Prius,也被称为“新时代丰田混合动力系统——THSⅡ”(见图1),节能效果可达到100km油耗不足3L。从2004年开始,丰田公司向欧洲市场推出了一款新的LexusRX型豪华混合动力轿车。丰田公司计划2012年全部采用汽油电力混合发动机,以提高燃油经济性和降低排放污染。

       2.2混合动力电动汽车分类及特点

       根据按照发动机与电动机的不同组合工作方式,混合动力电动汽车主要可以分为三类:串联式、并联式和混联式,基本结构如图2所示。

       图3所示为不同混合动力类型中电动机与发动机的功率分配情况:

       在串联式混合动力系统中,由发动机驱动发电机,利用发出的电能由电动机驱动车轮。即,发动机所发出的动能全部要先转换成电能,利用这一电能使车辆行驶。

       并联式混合动力系统采用的是发动机与电动机驱动车轮,根据情况来运用这两个动力源,由于动力源是并行的,故称为并联式混合动力系统。

       混联式也称串并联式,它可以最大限度地发挥串联式与并联式的各自优点,丰田的Prius系列的混合动力系统采用的就是这种工作方式。工作时,利用动力分配器分配发动机的动力:一方面直接驱动车轮,另一方面自主地控制发电。由于要利用电能驱动电动机,所以与并联式相比,电动机的使用比率增大了。

       3、HEV常用的电力电子技术及装置

       本文结合起来丰田新一代混合动力系统THSⅡ,具体研究发电力电子技术在HEV中的应用情况。THSⅡ的整车电气驱动系统(见图4)主要由采用AtkinSon循环的高效发动机、永磁交流同步电动机、发电机、动力分配装置、高性能镍金属氢化物(NI—MH)电池、控制管理单元以及各相关逆变器的DC—DC变换器等产件组成。

       高压电源电路、各种逆变器和14V蓄电池用辅助DC-DC变换器组成了功率控制单元(见图5),该单元集成了DSP控制器、驱动和保护电路、直流稳压电容、半导体、绝缘体、传感器、液体冷却回路以及和汽车通信的CAN总线接口。

       3.1电动机/发电机用逆变器单元

       在PriusTHSⅡ主驱动系统中,电动机和发电机所用三相电压型逆变器(功率分别为50kW和30kW)被集成一个模块上(如图6所示,逆变器的电气结构图如图7所示),直流母线最大供电电压被设定为500V。功率器件选用带有反并联续流二极管的商用IGBT(850V/200A),该功率等级的IGBT具有足以承受最大500V反压的能力,以及其它诸如雪崩击穿、瞬时短路的能力。

       电动机用逆变器的每个桥臂都是由并联有两个IGBT模块和二极管模块。每个IGBT芯片的面积为133mm2(13.7mm×9.7mm),并且发射极使用了5μm厚的铝膜;而每个二极管芯片的面积为90mm2(8.2mm×11mm)。

       目前,电动汽车普遍采用PWM控制的电压型逆变器,这种逆变器具有线路简单、效率高的特点,同时PWM逆变器呈现出以下几种发展趋势:

       (1)通常采用IGBT器件,工作频率高,并减少了低频谐波分量和起动是的电流冲击,当前国外应用的最高开关频率已达20kHz;

       (2)电机额定频率相应提高了,扩大了调速范围,在更好地满足运行要求的同时,减少电机的体积和重量,提高功率比。目前国外电动汽车专用电机的最高额定频率已达500Hz;

       (3)采用DSP为核心的计算机控制系统,能够实现可靠的矢量控制和运算,电机可做到快速恒力矩起动及弱磁高速运行,这种控制系统稳定,电流冲击小,控制效率高。

       除了以上传统的PWM控制技术外,最近出现了谐振直流环节变换器和高频谐振交流环节变换器。采用零电压或零电流开关技术的谐振式变换器具有开关损耗小、电磁干扰小、低噪声、高功率密度和高可靠性等优点,引起研究人员广泛的兴趣。

       目前应用于功率变换器的常用电子开关器件主要有GTO、BJT、MOSFET、IGBT和MCT等,由于IGBT集BJT和MOSFET特点于一体,所具有的高阻抗压控栅极,可明显降低栅极驱动功率,从而可使栅极驱动电路集成化;并且IGBT具有的极短的开关时间,可使系统具有快速响应能力,并减小了开关损耗,降低了噪声,因此IGBT是很好的开关器件。MCT也是一个潜在的选择器件,虽然目前商用的MCT的额定值还有待于提高;但是由于MCT具有低的导压降,因此随着MCT新型制造工艺的完善和新材料的使用,未来的MCT在电动汽车中将有良好的应用前景。

       3.2DC—DC升压变换器单元

       在THS中,蓄电池通过逆变器直接与电机和发电机相连(见图8);而THSⅡ中,蓄电池组输出的电压首先通过DC—DC升压变换器进行升压操作,然后再与逆变器相连,因此逆变器的直流母线电压从原THS的220V提升为现在的500V。

       图9为THSⅡ系统中能量交换示意图,图9中发电机的功率为30kW,蓄电池组的瞬时功率为20kW,两者联合起来为50kW的电机提供能量;图9中升压变换器的容量也被设计为20kW。

       这种系统具有如下优点:

       (1)由于电机的最大输出功率能力是与直流母线电压成正比的,因此与原THS系统的202V供电工况相比,在不增加驱动电流的情况下,THSⅡ系统中电机在500V供电时,其最大输出功率以及转矩的输出能力是原THS系统的2.5倍;此外相同体积的电机,还能免输出更高的功率;

       (2)由于使用了直流母线供电电压可变系统,因此THSⅡ可以根据电动机和发电机的实际需要,自由的调节直流母线供电电压,从而选择最优的供电电压,达到减少逆变器开关损耗以及电动机铜损的节能目的;

       (3)对于供电电压一定的蓄电池组来说,由于可以通过调整升压变压器的输出电压的方式,来满足电动机和发电机的实际需要,因此从某种程度上讲,可以减少蓄电池的使用数量,降低整车质量。

       图9所示的DC—DC升压变换器每个支路都并联有2个IGBT模块和续流二极管模块,其中每个IGBT芯片的面积为255mm2(15mm×15mm),每个续流二极管芯片的面积为117mm2(13mm×9mm)。图9所示的电路拓扑结构可以在不打断系统的正常工作的情况,保证蓄电池的充电和放电进行瞬间转化。由于DC—DC升压变换器的作用,而使主电容器上的系统电压(SystemVoltage)不同于蓄电池组的输出电压,从而保证电动机和发电机高电压工作的同时,而不受蓄电池组低电压输出能力的限制。

       3.3DC—DC降压变换器单元

       通常汽车中各种用电设备由14V蓄电池组供电(额定电压为12V),Prius也选用了14V蓄电池组作为诸如控制计算机、车灯、制动器等车载电气设备的供电电源,而对该蓄电池的充电工作则由直流220V通过DC—DC降压变换器来完成的,变换器的电路图如图10所示。变换器的容量为1.4kW(100A/14V),功率器件选用压控型商用MOSFET(500V/20A),每个MOSFET芯片的面积为49mm2(7mm×7mm)。

       3.4其它交流设备用逆变器单元

       PriusTHSⅡ空调系统使用了电机驱动的空气压缩机,取代了传统的用发动机机械驱动的空气压缩机。为了驱动空气压缩机用电机,设计了一种小功率逆变器(DC202V,1.6kW)。功率器件选用带有反并联续流二极管的商用IGBT(600V/30A),其中每个IGBT芯片的面积为22.1mm2(4.7mm×4.7mm),每个续流二极管芯片的面积为9mm2(3mm×3mm)。

       4HEV对电力电子技术的要求

       受实际运用条件的限制,要求混合动力电动汽车用电力电子技术及装置应具有成本低、体积小、比功率大、易于安装的特点。除此之外,下面的技术细节需进行重点考虑:

       (1)电力电子装置密封问题

       各种车用电力电子装置必须要进行有效的密封,以耐受温度和振动的影响,并能防止各种汽车液体的侵入。

       (2)电磁兼容/电磁干扰(EMC/EMI)问题

       混合动力电动汽车是一个相对狭小的空间,里面包含有各种控制芯片和弱电回路,因此在进行车载电力电子装置设计时,为了消除将来的事故隐患,必须要很好的研究并解决EMC/EMI问题。

       (3)直流母线电压利用问题

       混合动力电动汽车储能系统的电压是可变的,电压的大小取决于汽车实际负载的大小、运行工况(电动还是发电)以及电机是否弱磁运行等等,典型的母线电压波动范围是标称值的-30%~+25%。因此如何在汽车工况频繁变化的情况下,充分利用直流母线电压,成为了控制策略设计者所需要解决的问题。

       (4)电力电子装置控制问题

       “高开关频率”和“高采样率”目前普遍应用于混合动力电动汽车的电力电子装置和交流传动系统中,客观上“双高”需要高精度的编码器和解算器,因此这就意味着在电机中出现宽的温度梯度和饱和状态时,如何降低参数敏感度,以满足控制的要求。

       5结束语

       本文结合丰田汽车公司的最新一代混合动力电动汽车PriusTHSⅡ,综述了电力电子技术在混合电动汽车中的应用情况,提出了需要重点考虑并解决的技术问题。

       随着电力电子技术、微电子技术和控制技术的发展,数字化交流驱动系统在商业化电动汽车中得到广泛应用;而开发研制采用交流电机驱动系统的混合动力电动汽车,已经汽车工业可持续发展的重要途径之一。随着人类对生存环境要求的提高,合理利用能源意识的增强。作为一种污染小和高效率的现代化交通工具,混合动力电动汽车将得一全面的发展和应用。

       2.2混合动力电动汽车分类及特点

       根据按照发动机与电动机的不同组合工作方式,混合动力电动汽车主要可以分为三类:串联式、并联式和混联式,基本结构如图2所示。

       图3所示为不同混合动力类型中电动机与发动机的功率分配情况:

       在串联式混合动力系统中,由发动机驱动发电机,利用发出的电能由电动机驱动车轮。即,发动机所发出的动能全部要先转换成电能,利用这一电能使车辆行驶。

       并联式混合动力系统采用的是发动机与电动机驱动车轮,根据情况来运用这两个动力源,由于动力源是并行的,故称为并联式混合动力系统。

       混联式也称串并联式,它可以最大限度地发挥串联式与并联式的各自优点,丰田的Prius系列的混合动力系统采用的就是这种工作方式。工作时,利用动力分配器分配发动机的动力:一方面直接驱动车轮,另一方面自主地控制发电。由于要利用电能驱动电动机,所以与并联式相比,电动机的使用比率增大了。

       3、HEV常用的电力电子技术及装置

       本文结合起来丰田新一代混合动力系统THSⅡ,具体研究发电力电子技术在HEV中的应用情况。THSⅡ的整车电气驱动系统(见图4)主要由采用AtkinSon循环的高效发动机、永磁交流同步电动机、发电机、动力分配装置、高性能镍金属氢化物(NI—MH)电池、控制管理单元以及各相关逆变器的DC—DC变换器等产件组成。

       高压电源电路、各种逆变器和14V蓄电池用辅助DC-DC变换器组成了功率控制单元(见图5),该单元集成了DSP控制器、驱动和保护电路、直流稳压电容、半导体、绝缘体、传感器、液体冷却回路以及和汽车通信的CAN总线接口。

       3.1电动机/发电机用逆变器单元

       在PriusTHSⅡ主驱动系统中,电动机和发电机所用三相电压型逆变器(功率分别为50kW和30kW)被集成一个模块上(如图6所示,逆变器的电气结构图如图7所示),直流母线最大供电电压被设定为500V。功率器件选用带有反并联续流二极管的商用IGBT(850V/200A),该功率等级的IGBT具有足以承受最大500V反压的能力,以及其它诸如雪崩击穿、瞬时短路的能力。

       电动机用逆变器的每个桥臂都是由并联有两个IGBT模块和二极管模块。每个IGBT芯片的面积为133mm2(13.7mm×9.7mm),并且发射极使用了5μm厚的铝膜;而每个二极管芯片的面积为90mm2(8.2mm×11mm)。

       目前,电动汽车普遍采用PWM控制的电压型逆变器,这种逆变器具有线路简单、效率高的特点,同时PWM逆变器呈现出以下几种发展趋势:

       (1)通常采用IGBT器件,工作频率高,并减少了低频谐波分量和起动是的电流冲击,当前国外应用的最高开关频率已达20kHz;

       (2)电机额定频率相应提高了,扩大了调速范围,在更好地满足运行要求的同时,减少电机的体积和重量,提高功率比。目前国外电动汽车专用电机的最高额定频率已达500Hz;

       (3)采用DSP为核心的计算机控制系统,能够实现可靠的矢量控制和运算,电机可做到快速恒力矩起动及弱磁高速运行,这种控制系统稳定,电流冲击小,控制效率高。

       除了以上传统的PWM控制技术外,最近出现了谐振直流环节变换器和高频谐振交流环节变换器。采用零电压或零电流开关技术的谐振式变换器具有开关损耗小、电磁干扰小、低噪声、高功率密度和高可靠性等优点,引起研究人员广泛的兴趣。

       目前应用于功率变换器的常用电子开关器件主要有GTO、BJT、MOSFET、IGBT和MCT等,由于IGBT集BJT和MOSFET特点于一体,所具有的高阻抗压控栅极,可明显降低栅极驱动功率,从而可使栅极驱动电路集成化;并且IGBT具有的极短的开关时间,可使系统具有快速响应能力,并减小了开关损耗,降低了噪声,因此IGBT是很好的开关器件。MCT也是一个潜在的选择器件,虽然目前商用的MCT的额定值还有待于提高;但是由于MCT具有低的导压降,因此随着MCT新型制造工艺的完善和新材料的使用,未来的MCT在电动汽车中将有良好的应用前景。

       3.2DC—DC升压变换器单元

       在THS中,蓄电池通过逆变器直接与电机和发电机相连(见图8);而THSⅡ中,蓄电池组输出的电压首先通过DC—DC升压变换器进行升压操作,然后再与逆变器相连,因此逆变器的直流母线电压从原THS的220V提升为现在的500V。

       图9为THSⅡ系统中能量交换示意图,图9中发电机的功率为30kW,蓄电池组的瞬时功率为20kW,两者联合起来为50kW的电机提供能量;图9中升压变换器的容量也被设计为20kW。

       这种系统具有如下优点:

       (1)由于电机的最大输出功率能力是与直流母线电压成正比的,因此与原THS系统的202V供电工况相比,在不增加驱动电流的情况下,THSⅡ系统中电机在500V供电时,其最大输出功率以及转矩的输出能力是原THS系统的2.5倍;此外相同体积的电机,还能免输出更高的功率;

       (2)由于使用了直流母线供电电压可变系统,因此THSⅡ可以根据电动机和发电机的实际需要,自由的调节直流母线供电电压,从而选择最优的供电电压,达到减少逆变器开关损耗以及电动机铜损的节能目的;

       (3)对于供电电压一定的蓄电池组来说,由于可以通过调整升压变压器的输出电压的方式,来满足电动机和发电机的实际需要,因此从某种程度上讲,可以减少蓄电池的使用数量,降低整车质量。

       图9所示的DC—DC升压变换器每个支路都并联有2个IGBT模块和续流二极管模块,其中每个IGBT芯片的面积为255mm2(15mm×15mm),每个续流二极管芯片的面积为117mm2(13mm×9mm)。图9所示的电路拓扑结构可以在不打断系统的正常工作的情况,保证蓄电池的充电和放电进行瞬间转化。由于DC—DC升压变换器的作用,而使主电容器上的系统电压(SystemVoltage)不同于蓄电池组的输出电压,从而保证电动机和发电机高电压工作的同时,而不受蓄电池组低电压输出能力的限制。

       3.3DC—DC降压变换器单元

       通常汽车中各种用电设备由14V蓄电池组供电(额定电压为12V),Prius也选用了14V蓄电池组作为诸如控制计算机、车灯、制动器等车载电气设备的供电电源,而对该蓄电池的充电工作则由直流220V通过DC—DC降压变换器来完成的,变换器的电路图如图10所示。变换器的容量为1.4kW(100A/14V),功率器件选用压控型商用MOSFET(500V/20A),每个MOSFET芯片的面积为49mm2(7mm×7mm)。

       3.4其它交流设备用逆变器单元

       PriusTHSⅡ空调系统使用了电机驱动的空气压缩机,取代了传统的用发动机机械驱动的空气压缩机。为了驱动空气压缩机用电机,设计了一种小功率逆变器(DC202V,1.6kW)。功率器件选用带有反并联续流二极管的商用IGBT(600V/30A),其中每个IGBT芯片的面积为22.1mm2(4.7mm×4.7mm),每个续流二极管芯片的面积为9mm2(3mm×3mm)。

       4HEV对电力电子技术的要求

       受实际运用条件的限制,要求混合动力电动汽车用电力电子技术及装置应具有成本低、体积小、比功率大、易于安装的特点。除此之外,下面的技术细节需进行重点考虑:

       (1)电力电子装置密封问题

       各种车用电力电子装置必须要进行有效的密封,以耐受温度和振动的影响,并能防止各种汽车液体的侵入。

       (2)电磁兼容/电磁干扰(EMC/EMI)问题

       混合动力电动汽车是一个相对狭小的空间,里面包含有各种控制芯片和弱电回路,因此在进行车载电力电子装置设计时,为了消除将来的事故隐患,必须要很好的研究并解决EMC/EMI问题。

       (3)直流母线电压利用问题

       混合动力电动汽车储能系统的电压是可变的,电压的大小取决于汽车实际负载的大小、运行工况(电动还是发电)以及电机是否弱磁运行等等,典型的母线电压波动范围是标称值的-30%~+25%。因此如何在汽车工况频繁变化的情况下,充分利用直流母线电压,成为了控制策略设计者所需要解决的问题。

       (4)电力电子装置控制问题

       “高开关频率”和“高采样率”目前普遍应用于混合动力电动汽车的电力电子装置和交流传动系统中,客观上“双高”需要高精度的编码器和解算器,因此这就意味着在电机中出现宽的温度梯度和饱和状态时,如何降低参数敏感度,以满足控制的要求。

       5结束语

       本文结合丰田汽车公司的最新一代混合动力电动汽车PriusTHSⅡ,综述了电力电子技术在混合电动汽车中的应用情况,提出了需要重点考虑并解决的技术问题。

       随着电力电子技术、微电子技术和控制技术的发展,数字化交流驱动系统在商业化电动汽车中得到广泛应用;而开发研制采用交流电机驱动系统的混合动力电动汽车,已经汽车工业可持续发展的重要途径之一。随着人类对生存环境要求的提高,合理利用能源意识的增强。作为一种污染小和高效率的现代化交通工具,混合动力电动汽车将得一全面的发展和应用。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言