Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

斜振逆变器原理

发布时间:2024-08-11 10:30:18 人气:

串联谐振和并联谐振的区别

       串联谐振和并联谐振的区别具体如下:

       (一)串联谐振和并联谐振区别一

       1、从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

       2、串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。当逆变失败时,浪涌电流大,保护困难。并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

       (二)串联谐振和并联谐振区别二

       1、串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

       2、并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。这就是说,两者都是工作在容性负载状态。

       3、串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。即应有一段时间(t)使所有晶闸管(其它电力电子器件)都处于关断状态。此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适的器件的浪涌电压吸收电路。此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器上高电压的影响,必须在晶闸管两端反并联快速二极管。

       4、并联逆变器是恒流源供电,为避免滤波电抗Ld上产生大的感生电势,电流必须连续。也就是说,必须保证逆变器上、下桥臂晶闸管在换流时,是先开通后关断,也即在换流期间(tγ)内所有晶闸管都处于导通状态。这时,虽然逆变桥臂直通,由于Ld足够大,也不会造成直流电源短路,但换流时间长,会使系统效率降低,因而需缩短tγ,即减小Lk值。

       (三)串联谐振和并联谐振区别三

       1、串联逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t时间,否则会因逆变器上、下桥臂直通而导致换流的失败。并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t,否则会导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。

       2、串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。

       3、串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。在换流时,关断的晶闸管受反压的时间(t+tγ)较长。

       (四)串联谐振和并联谐振区别四

       1、并联逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。相比之下,串联逆变器更适宜于在工作频率较高的感应加热装置中使用。

       2、串联逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行,但负载电路的全部电流,包括有功和无功分量,都需流过晶闸管。逆变晶闸管丢失脉冲,只会使振荡停止,不会造成逆变颠覆。

       3、并联逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。但负载本身构成振荡电流回路,只有有功电流流过逆变晶闸管,而且逆变晶闸管偶而丢失触发脉冲时,仍可维持振荡,工作比较稳定。

       4、串联逆变器可以自激工作,也可以他激工作。他激工作时,只需改变逆变触发脉冲频率,即可调节输出功率;而并联逆变器一般只能工作在自激状态。

       5、在串联逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。

       (五)串联谐振和并联谐振区别五

       1、串联逆变器起动容易,适用于频繁起动工作的场合;而并联逆变器需附加起动电路,起动较为困难。

       2、串联逆变器中的晶闸管由于承受矩形波电压,故du/dt值较大,吸收电路起着关键作用,而对其di/dt要求则较低。在并联逆变器中,流过逆变晶闸管的电流是矩形波,因而要求大的di/dt,而对du/dt的要求则低一些。

       3、串联逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。如果采用同轴电缆或将来回线尽量靠近(扭绞在一起更好)敷设,则几乎没有影响。而对并联逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。

       4、串联逆变器感应线圈上的电压和槽路电容器上的电压,都为逆变器输出电压的Q倍,流过感应线圈上的电流,等于逆变器的输出电流。并联逆变器的感应线圈和槽路电容器上的电压,都等于逆变器的输出电压,而流过它们的电流,则都是逆变器输出电流的Q倍。

       

参考资料:

百度百科-谐振

逆变器的产品特点 逆变器的工作原理

        逆变器,英文inverter,是一种电源转换装置,可将12V或24V的直流电转换成230V、50Hz交流电或其它类型的交流电。它输出的交流电可用于各类设备.最大限度地满足移动供电场所或无电地区使用者对交流电源的需要。逆变器工作原理是什么呢?有什么产品特点。

        工作原理

        Inverter 是一种直流到交流(DC to AC)的变压器,顾名思义是逆向变压,它其实与适配器Adapter是一种电压逆变的过程。Adapter是将市电电网的交流电压转变为稳定的 12V直流输出, 而 Inverter 是将Adapter输出的 12V直流电压转变为高频的高压交流电。现在的逆变器一般采用了PWM(Pulse W

       

        产品特点

        1.转换效率高、启动快;

        2.安全性能好:产品具备短路、超载、过/欠电压、超温5种保护功能;

        3.物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;

        4.带负载适应性与稳定性强

        逆变器的分类

        一,按照逆变器输出分类

        1,单相逆变器;2,三相逆变器;3,多相逆变器

        二,按照逆变器输出交流的频率分类

        1,工频逆变器;2,中频逆变器;3,高频逆变器

        三,按照逆变器的输出波形分类

        1;方波逆变器;2,阶梯波逆变器;3,正弦逆变器

        四,按照逆变器线路原理分类

        1,自激振荡型逆变器;2,阶梯波叠加型逆变器;3,脉宽调制型逆变器;4,谐振型逆变器

        五,按照逆变器主电路结构分类

        1,单端式逆变器;2,半桥式逆变器;3,全桥式逆变器;4,推挽桥式逆变器

        关于逆变器工作原理的相关资讯就为大家介绍到这里了,希望这篇文章对大家有所帮助。如果大家还有什么不明白的地方可以在下方给我留言哦,

我们会尽快为您解答。

第四类稳态逆变类发明原理包括

       第四类稳态逆变类发明原理如下:

一、逆变电路的原理

       逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。

       桥式逆变电路的开关状态由加于其控制极的电压信号决定,桥式电路的PN端加入直流电压Ud,A、B端接向负载。当T1、T4打开而T2、T3关合时,u0=Ud;相反,当T1、T4关合而T2、T3打开时,u0=-Ud。

       于是当桥中各臂以频率 f(由控制极电压信号重复频率决定)轮番通断时,输出电压u0将成为交变方波,其幅值为Ud。重复频率为f,(如图1:单向全桥式逆变电路所示),其基波可表示为把幅值为Ud的矩形波uo展开成傅立叶级数得:uo=4Ud/π (sinwt+1/3 sin3wt+1/5 sin5wt+...)

       由式可见,控制信号频率f可以决定输出端频率,改变直流电源电压Ud可以改变基波幅值,从而实现逆变的目的。

二、逆变电路的种类

       为了满足不同用电设备对交流电源性能参数的不同要求,已发展了多种逆变电路,并大致可按以下方式分类。

       1、按输出电能的去向分,可分为有源逆变电路和无源逆变电路。前者输出的电能返回公共交流电网,后者输出的电能直接输向用电设备。

       2、按直流电源性质可分为由电压型直流电源供电的电压型逆变电路和由电流型直流电源供电的电流型逆变电路。

       3、按主电路的器件分,可分为:由具有自关断能力的全控型器件组成的全控型逆变电路;由无关断能力的半控型器件(如普通晶闸管)组成的半控型逆变电路。半控型逆变电路必须利用换流电压以关断退出导通的器件。

       若换流电压取自逆变负载端,称为负载换流式逆变电路。这种电路仅适用于容性负载;对于非容性负载,换流电压必须由附设的专门换流电路产生,称自换流式逆变电路。

       4、按电流波形分,可分为正弦逆变电路和非正弦逆变电路。前者开关器件中的电流为正弦波,其开关损耗较小,宜工作于较高频率。后者开关器件电流为非正弦波,因其开关损耗较大,故工作频率较正弦逆变电路低。

       5、按输出相数可分为单相逆变电路和多相逆变电路。

什么是串联谐振逆变器一般用在什么地方

       换流电容与负载感应器串联,利用负载回路串联谐振进行换流的逆变器。称为串联谐振逆变器,简称串联逆变器。串联逆变器适用于负载变化不大,需要频繁启动的和工作频率较高的场合,如应用于淬火、热锻和粉末冶金等方面。

llc谐振电路原理

       llc谐振电路原理如下:

       1、谐振原理

       LLC谐振电路利用电感和电容的谐振特性,在工作频率上形成谐振。当电感和电容的谐振频率与输入信号的频率相匹配时,电路达到最大效率。

       2、能量存储

       在工作周期的不同阶段,能量在电感和电容之间进行存储和转移。在谐振频率附近,电感储存电能,并将其传递给电容。这样可以实现高效的能量转换。

       3、零电压开关

       LLC谐振电路使用零电压开关技术,确保在开关元件(如MOSFET)切换时,输出的电压接近零。这有助于减少开关损耗和电磁干扰。

       4、输出滤波

       LLC谐振电路还包含输出滤波网络,用于去除谐振产生的高频噪声,并提供稳定的输出电压。

llc谐振电路的特点:

       1、高效率与高功率密度

       LLC谐振电路通过利用谐振频率的能量传输,实现了高效率的功率转换。其在高频范围内运作,可以实现高功率密度设计,使得电源和逆变器等设备更紧凑、轻便。

       2、低损耗与低热量产生

       由于LLC谐振电路采用零电压开关技术,在开关元件切换时避免了电压和电流的大幅度变化,从而降低了开关损耗。这样可以减少能量转化过程中的热量产生,提高系统效率。

       3、优异的电磁兼容性

       LLC谐振电路采用谐振技术,将高频噪声限制在特定频带内,并通过输出滤波网络进一步滤除高频噪声。因此,它具有较低的辐射和传导干扰,能够满足对电磁兼容性要求较高的应用场景,如通信设备、医疗器械等。

       4、适应多种负载条件

       LLC谐振电路能够适应不同的负载条件,包括纯阻性负载、电感性负载和电容性负载等。它具有较好的负载适应性,能够在各种工作条件下保持高效率和稳定性。

逆变器谐振提高载频的原理

该仪器工作原理如下。

       逆变器谐振提高载频的原理是利用逆变器输出电压的高次谐波分量与负载电路的谐振频率相匹配,从而增加负载电流的幅值,提高逆变器的输出功率。逆变器谐振可以分为串联谐振和并联谐振两种类型,工作原理和特点有所不同。

       提高载频可以减少逆变器输出端的高次谐波分量,降低对负载和供电系统的干扰,同时也可以减少开关损耗,提高逆变器的效率。但是,提高载频也会增加开关次数,造成开关元件的过热和寿命降低。因此,需要根据实际情况选择合适的载频,并采取一些措施来抑制或补偿谐波,如安装滤波器、隔离变压器、电抗器等。

高频感应加热电源为什么都用串联谐振逆变器

       高频感应加热电源为什么都用串联谐振逆变器

       一般串联电容是为了形成LC的振荡,再调整触发信号的频率形成谐振,也叫谐振电容。让电路谐振起来可以做成软开关,即ZVS或者ZCS。这样开关管不用一直工作在硬关断和硬开通区域,减少了开关损耗。

串联谐振逆变器的控制方法是什么?

       1.串联谐振逆变器基本结构

串联谐振逆变器的基本原理图如图1所示。它包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。

       2串联谐振逆变器的控制方法

       2.1 调幅控制(PAM)方法

调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。

       这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。

       2.2 脉冲频率调制(PFM)方法

脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。

从串联谐振负载的阻抗特性

可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。

脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:

1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。

2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。

       2.3脉冲密度调制(PDM)方法

脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。

这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。

脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。

脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言