Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器要几个PWM

发布时间:2024-07-23 19:10:14 人气:

逆变器的简单工作原理

       逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。

       其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。TL5001的工作电压范围3.6~40V,其内部设一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。

       输入接口部分:输入部分有3个信号,12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。VIN由Adapter提供,ENB电压由主板上的MCU提供,其值为0或3V,当ENB=0时,逆变器不工作,而ENB=3V时,逆变器处于正常工作状态。

       而DIM电压由主板提供,其变化范围在0~5V之间,将不同的DIM值反馈给PWM控制器反馈端,逆变器向负载提供的电流也将不同,DIM值越小,逆变器输出的电流就越大。电压启动回路:ENB为高电平时,输出高压去点亮Panel的背光灯灯管。

       PWM控制器:有以下几个功能组成:内部参考电压、误差放大器、振荡器和PWM、过压保护、欠压保护、短路保护、输出晶体管。

       直流变换:由MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。

       LC振荡及输出回路:保证灯管启动需要的1600V电压,并在灯管启动以后将电压降至800V。

       输出电压反馈:当负载工作时,反馈采样电压,起到稳定I逆变器电压输出的作用。

扩展资料:

       逆变器的特点

       1、转换效率高、启动快;

       2、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能;

       3、物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;

       4、带负载适应性与稳定性强。

       逆变器的工作效率

       逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输出功率与输入功率之比,即逆变器效率为输出功率比上输入功率。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。

       百度百科-逆变器

牵引变流器中网测单向pwm整流器和电机测三相pwm逆变器的p

请问你是想问“牵引变流器中网测单向pwm整流器和电机测三相pwm逆变器的p的意思”吗?具体含义如下:

       网测单向PWM整流器的作用主要是将电网侧的交流电转换为直流电,同时通过控制PWM(脉冲宽度调制)信号的占空比实现电压和电流的调节。这种整流器只有一个方向,只能从电网侧向电机侧传输能量。

       电机测三相PWM逆变器的作用则正好相反,它是将直流电转换为交流电,以便驱动电机。这种逆变器使用PWM技术来控制电流的波形和频率,从而实现电机的速度和转矩控制。由于电机需要三相交流电,因此这种逆变器具有三个相位,可以同时向电机提供正弦波形的电流。

简单的逆变器电路图分析

       这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。

       电路图

       工作原理

       这里我们将详细介绍这个逆变器的工作原理。

       方波信号发生器(见图3)

       这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

       场效应管驱动电路

       这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

       场效应管驱动电路

       由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图4所示。

       MOS场效应管电源开关电路。

       这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。

       图5

MOS场效应管也被称为MOSFET,既MetalOxideSemiconductorFieldEffectTransistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

       图6

       为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。

       图7a图7b

       对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS场效应管的工作过程,其工作原理类似这里不再重复。

       图8

下面简述一下用C-MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

       由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。

       制作要点

       电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。

       逆变器的性能测试

       测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:

       假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。

PWM逆变器是什么?

       此电流通过电机内部的寄生电容产生流入地线的漏电流。漏电流过大将对电源产生电磁干扰,还会使电机轴承过早毁坏,从而影响系统运行的可靠性。文中提出了一种新颖的可以有效消除脉冲宽度调制(PWM)逆变器产生的共模电压的有源滤波器。这个有源滤波器由一个单相逆变器和一个五绕组共模变压器组成,可以产生与PWM逆变器输出的电压幅值相等,相位相反的共模电压,通过五绕组共模变压器叠加到逆变器输出中,从而有效消除感应电机端的共模电压。这种有源滤波器结构简单,控制容易。文中通过理论分析,仿真和实验结果证明了这种结构的有效性。  高速电力半导体器件如绝缘栅双极晶体管(IGBT)的发展使电压源型脉宽调制逆变器的载波频率大大提高(如20 kHz),高开关频率以及零开关损耗方案可显着提高PWM变频器的性能。但在PWM变频器的应用中,出现了一些负面问题。  例如,传统的IGBT的控制策略使PWM逆变器输出产生了共模电压。共模电压使IGBT在高速开关期间,产生充放电电流。电流通过电机内部的寄生电容产生流入地线的漏电流,漏电流过大将引起电机保护电路的误动作;频率从100 kHz到几兆范围变化的漏电流经地线流回系统的三相电源中,产生电磁干扰(EMI) ,影响电网上的其他设备的正常运行;轴电压和轴承电流过大使电机轴承过早毁坏 。为抑制逆变器输出的共模电压,提高系统的可靠性,传统的方法是采用转轴接地,轴承绝缘,具有传导性的润滑剂等来降低轴电流,保护电机轴承,但是电机端共模电压仍然存在。电机负载运行时,共模电压仍会通过负载轴承产生具有破坏性的电流。为此开始采用由无源器件组成的滤波器,这类方法对消除过电压的影响非常有效,但载波频率发生变化时,对降低逆变器输出中的谐波成分的作用非常有限。  因此,近年来开始尝试用有源器件来消除这些负面影响。Alexander Julian等提出了四相逆变器来消除共模电压,这种方法会产生严重的开关损耗和谐波失真。Annette Jouanne提出双桥逆变器(DBI)用于消除电机共模电压和由此产生的轴承漏电流,这种方法增加了一个三相逆变器及相应的驱动设备,所采用电机的定子必须有两套绕组,从而限制了这种方法的应用范围。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言