发布时间:2024-07-22 16:00:22 人气:
ups电源工作原理是什么?
不间断电源(或称UPS,即UninterruptiblePowerSupply)是在电网异常(如停电、欠压、乾扰或浪涌「也称:涌浪电流」)的情况下不间断的为电器负载设备提供後备交流电源,维持电器正常运作的设备。通常情况下不间断电源被用於维持计算机(尤其是服务器)或交换机等关键性商用设备或精密仪器的不间断运行,防止计算机数据丢失,电话通信网络中断或仪器失去控制。电网异常使用不间断电源是为了应对电网可能出现的以下情况:
停电(电网停止工作,无电压输出)压降(亦称下陷,电网电压低於标称电压15%-20%,时间可能持续数秒)
电涌(亦称浪涌、突波,电网电压瞬间高於标称电压10%以上,时间持续数秒)
持续欠压
持续过压
线噪(因线路屏蔽差而引入的射频或电磁乾扰)
频率漂移(发电机不稳定造成的电网频率偏差)
开关瞬态(亦称暂态,由电气设备开关或放电造成的电压偏差,有时可高达20000伏,但是持续时间极短,仅数纳秒)
谐波(电网中由非线性特性的电气设备产生的对交流电正弦波形的乾扰)不间断电源的发展飞轮式不间断电源
在使用电池的时代之前,不间断电源曾经使用飞轮和内燃机为负载提供电能供应,这种不间断电源被称为飞轮式或旋转式不间断电源。飞轮式不间断电源由整流器、直流电动机、飞轮、柴油机(或汽油机)及发电机等组成。在电网供电的情况下,由整流器提供的直流电驱动电动机带动飞轮旋转,并且带发电机为负载供电。由於飞轮的惯性作用,发电机转速可以保持均衡,此时不间断电源起过滤电网乾扰的作用。当电网断电後,飞轮继续带动发电机的转子旋转,同时启动柴油机带动发电机发电,替代原有电网为负载供电。
由於飞轮式不间断电源使用内燃机提供电力,会产生较大的噪音同时体积也较大,因此目前一般仅被用於应急情况和一些自然状况恶劣的场合,通常情况下不间断电源会使用蓄电池来提供电力。
蓄电池式不间断电源
自二十世纪六十年代美国通用电气公司研究生产不间断电源以来,不间断电源一直在被改进,但是其基本原理没有重大变化。
现代的不间断电源由电池组、逆变器和控制电路组成,一端连接电网另一端连接电器负载。在电网电压正常的情况下,不间断电源利用电网电源为自身充电,在电网出现异常的时候,不间断电源将存储於电池中的电能释放,供负载使用。它按工作方式通常分为在线式和後备式(亦称为离线式)两种;按输出波形可分为正弦型、近似正弦型(用阶梯方波来拟合正弦波)等。
不间断电源的工作原理在线式
在线式不断电系统(On-LineUPS)的运作模式为“市电和用电设备是隔离的,市电不会直接供电给用电设备”,而是到了UPS就被转换成直流电,再兵分两路,一路为电池充电,另一路则转回交流电,供电给用电设备,市电供电品质不稳或停电时,电池从充电转为供电,直到市电恢复正常才转回充电,“UPS在用电的整个过程是全程介入的”。其优点是输出的波型和市电一样是正弦波,而且纯净无杂讯,不受市电不稳定的影响,可供电给“电感型负载”,例如电风扇,只要在UPS输出功率足够的前题下,可以供电给任何使用市电的设备。
後备式後备式又称为离线式不断电系统(Off-LineUPS),它只是“备援”性质的UPS,市电直接供电给用电设备也为电池充电(NormalMode),一旦市电供电品质不稳或停电了,市电的回路会自动切断,电池的直流电会被转换成交流电接手供电的任务(BatteryMode),直到市电恢复正常,“UPS只有在市电停电了才会介入供电”,不过从直流电转换的交流电是方波,只限於供电给电容型负载,如电脑和监视器。
线上交错式线上交错式又称为线上互动式或在线互动式(Line-InteractiveUPS),基本运作方式和离线式一样,不同之处在於线上交错式虽不像在线式全程介入供电,但随时都在监视市电的供电状况,本身具备升压和减压补偿电路,在市电的供电状况不理想时,即时校正,减少不必要的“BatteryMode”切换,延长电池寿命
维护在使用不间断电源系统的过程中,人们往往片面地认为蓄电池是免维护的而不加重视。然而有资料显示,因蓄电池故障而引起UPS主机故障或工作不正常的比例大约为1/3。由此可见,加强对UPS电池的正确使用与维护,对延长蓄电池的使用寿命,降低UPS系统故障率,有著越来越重要的意义。除了选配正规品牌蓄电池以外,应从以下几个方面入手正确地使用与维护蓄电池:一、保持适宜的环境温度:影响蓄电池寿命的重要因素是环境温度,一般电池生产厂家要求的最佳环境温度是在20-25℃之间。虽然温度的升高对电池放电能力有所提高,但付出的代价却是电池的寿命大大缩短。据试验测定,环境温度一旦超过25℃,每升高10℃,电池的寿命就要缩短一半。目前UPS所用的蓄电池一般都是免维护的密封铅酸蓄电池,设计寿命普遍是5年,这在电池生产厂家要求的环境下才能达到。达不到规定的环境要求,其寿命的长短就有很大的差异。另外,环境温度的提高,会导致电池内部化学活性增强,从而产生大量的热能,又会反过来促使周围环境温度升高,这种恶性循环,会加速缩短电池的寿命。二、定期充电放电:UPS电源中的浮充电压和放电电压,在出厂时均已调试到额定值,而放电电流的大小是随著负载的增大而增加的,使用中应合理调节负载,比如控制微机等电子设备的使用台数。一般情况下,负载不宜超过UPS额定负载的60%。在这个范围内,电池的放电电流就不会出现过度放电。UPS因长期与市电相连,在供电质量高、很少发生市电停电的使用环境中,蓄电池会长期处於浮充电状态,日久就会导致电池化学能与电能相互转化的活性降低,加速老化而缩短使用寿命。因此,一般每隔2-3个月应完全放电一次,放电时间可根据蓄电池的容量和负载大小确定。一次全负荷放电完毕後,按规定再充电8小时以上。三、利用通讯功能:目前,绝大多数大、中型UPS都具备与微机通讯和程序控制等可操作性能。在微机上安装相应的软件,通过串/并口连接UPS,运行该程序,就可以利用微机与UPS进行通讯。一般具有信息查询、参数设置、定时设定、自动关机和报警等功能。通过信息查询,可以获取市电输入电压、UPS输出电压、负载利用率、电池容量利用率、机内温度和市电频率等信息;通过参数设置,可以设定UPS基本特性、电池可维持时间和电池用完告警等。通过这些智能化的操作,大大方便了UPS电源及其蓄电池的使用管理。
碳化硅二极管价格贵,用绝缘二极管来替换,效率高,价格低。适合逆变器,PFC电路!
海飞乐Qlong绝缘二极管采用独特的硅基工艺。可提供极低的反向恢复电荷Qrr,并具有软恢复特性,这使得它们非常适合CCM升压PFC,并在硬开关应用中用作输出二极管。当PN硅二极管在导通和反向偏置期间关断时,电流将快速将至零,然后在二极管从正向导通中恢复时开始反向流经该二极管。负电流与时间的乘积被定义为反向恢复电荷或者Qrr。
这是每个开关周期的能量损耗。Qlong绝缘二极管具有极低的Qrr,与超快恢复二极管相比尤其低。另外,二极管的反向恢复还会导致EMI,在此波形中,可以看到用来缩短反向恢复时间的铂掺杂造成了一个非常陡峭的波形,其锐缘可产生大量的噪声。
二极管的软度被定位为时间Tb与时间Ta的比值,
例如,这种波形陡峭的二极管的软度为0.2,比较理想的软度系数是0.5,海飞乐Qlong二极管具有出色的软度,软度系数接近1.00。
减少二极管的Qrr值可降低MOS管的开关损耗,使你的设计能够在较高的频率下工作,从而降低磁性元件的尺寸和成本。
我们在CMM升压PFC电路测试中,发现Qlong二极管中开关孙高的降低使MOS管的温度下降了6.1°,这种热能的减少使得效率提高了1.1%,其他工程师在采用Qlong二极管后发现效率提高2.5%。低Qrr值可减少MOS的导通电流。使工程师使用更小成本的元件。
在这个设计中,因采用了Qlong二极管而使MOS的电流容量从21A下降到12A.
这提高了电源效率,使MOS管的温度下降了10°以上,同时并没有增加BOM成本。
海飞乐Qlong绝缘二极管的恢复软度有助于大幅度降低EMI,这以改进可降低EMI滤波器的尺寸和成本,或提供额外的性能以满足更具挑战性的规范要求。
Qlong二极管还适合充当输出二极管,在这个设计中换用Qlong二极管后,峰值反向电压大幅度降低,设计师可以完成移除缓冲电路,而且它的性能仍比原来的设计方案好。这不仅降低了设计成本和复杂度,而且还将效率提高了2%。
所有的Qlong二极管都表现出为平坦的Qrr温度依存性,可确保在不同工作范围内性能的一致性,并防止热逃逸。
Qlong绝缘二极管还以常见的阴极封装提供,这是高性能绝缘二极管首次采用的封装形式,这种封装可以减少交错并联和无桥式拓扑结构中所需安装的硬件数。对于CCM升压PFC,电动汽车充电器和许多其他硬开关应用来说,Qlong绝缘二极管在降低EMI,降低开关损耗和提供极高效率方面,都是性能最佳的硅二极管。
总结:Qlong绝缘二极管是对CCM升压PFC应用的完美补充,与高性能超快速PFC二极管相比,Qlong绝缘二极管具有非常低的反向恢复电荷,可将开关损耗降低80%以上。在直接替换测试中发现,Qlong绝缘二极管可带来1.5%的效率提升,整个电路优化后,效率可提升2.5%。还可以减少开关的导通电流尖峰,使设计师能够大幅度降低MOS管的电流额定值,从而节省成本和降低导通损耗。同时Qlong二极管还具有出色的软度,可降低EMI噪声和减少电压尖峰。海飞乐FAE建议Qlong二极管更适合开关频率在80kHz以上的应用。
Qlong绝缘二极管可以在桥式逆变器中用作反并联二极管,性能十分出色,具有极快速回复特性,且结电容低至11pF,因此它可以将开关损耗将至很低,从而大幅度提升转换器的效率,Qlong二极管的快速恢复时间可为器件提供击穿保护,即使在高工作频率下也能提供此保护,这样,工程师就可以提高开关频率,以减少磁性尺寸和大幅提高功率密度,同时降低EMI噪声干扰,即使在提高开关频率的过程中也具有次特性,对于高性能,高频率逆变器,我们建议采用具有超低损耗的Qlong绝缘二极管。
UPS工作原理
当市电正常为380/220VAC时,直流主回路有直流电压,供给DC-AC交流逆变器,输出稳定的220V或380V交流电压,同时市电经整流后对电池充电。当任何时候市电欠压或突然掉电,则由电池组通过隔离二极管开关向直流回路馈送电能。从电网供电到电池供电没有切换时间。当电池能量即将耗尽时,不间断电源发出声光报警,并在电池放电下限点停止逆变器工作,长鸣告警。不间断电源还有过载保护功能,当发生超载(150%负载)时,跳到旁路状态,并在负载正常时自动返回。
当发生严重超载(超过200%额定负载)时,不间断电源立即停止逆变器输出并跳到旁路状态,此时前面输入空气开关也可能跳闸。消除故障后,只要合上开关,重新开机即开始恢复工作。
扩展资料:
一、飞轮式不间断电源
在使用电池的时代之前,不间断电源曾经使用飞轮和内燃机为负载提供电能供应,这种不间断电源被称为飞轮式或旋转式不间断电源。飞轮式不间断电源由整流器、直流电动机、飞轮、柴油机(或汽油机)及发电机等组成。
在电网供电的情况下,由整流器提供的直流电驱动电动机带动飞轮旋转,并且带发电机为负载供电。由于飞轮的惯性作用,发电机转速可以保持均衡,此时不间断电源起过滤电网干扰的作用。当电网断电后,飞轮继续带动发电机的转子旋转,同时启动柴油机带动发电机发电,替代原有电网为负载供电。
由于飞轮式不间断电源使用内燃机提供电力,会产生较大的噪音同时体积也较大,因此目前一般仅被用于应急情况和一些自然状况恶劣的场合,通常情况下不间断电源会使用蓄电池来提供电力。
二、 蓄电池式不间断电源
自二十世纪六十年代美国通用电气公司研究生产不间断电源以来,不间断电源一直在被改进,但是其基本原理没有重大变化。
现代的不间断电源由电池组、逆变器和控制电路组成,一端连接电网另一端连接电器负载。在电网电压正常的情况下,不间断电源利用电网电源为自身充电,在电网出现异常的时候,不间断电源将存储于电池中的电能释放,供负载使用。
它按工作方式通常分为在线式和后备式(亦称为离线式)两种;按输出波形可分为正弦型、近似正弦型(用阶梯方波来拟合正弦波)等。
参考资料:
直流电动机的调速方法有哪些?各有什么特点?
直流电动机的调速方法:一,可以直接使用调压器改变输入电压调速,常用于千瓦级别电机。
二,可控硅移相调速几十千瓦到几百千瓦级别电机调速。
三,脉宽调速几十瓦到几百瓦级别电机调速。四改变电刷位置调速特殊电机比方汽车雨刷器电机。
特点:
1.调压器改变输入电压调速:1、弱磁调速,改变历磁电压,降压就升速,升压就降速。 2、改变电枢电压,升压就升速,降压就降速,这个采用得很多。 总之改变电压必需要有一个调压装置,可以是串电阴,可以是用直流调压器。 但在弱磁调速中,历磁电压一定要有,如果没有历磁电压将会产生飞车,那是很危险的。
2、可控硅移相调速: 移相触发是可控硅控制的一种方式,其是通过控制可控硅的导通角大小来控制可控硅的导能量,从而改变负载上所加的功率。特点控制波动小,使输出电流、电压平滑升降。
3、脉宽调速:一,可以直接使用调压器改变输入电压调速,常用于千瓦级别电机。二,可控硅移相调速几十千瓦到几百千瓦级别电机调速。三,脉宽调速几十瓦到几百瓦级别电机调速。四改变电刷位置调速特殊电机比方汽车雨刷器电机。
直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中自励又分为并励、串励和复励3种。
基本介绍
直流电动机就是将直流电能转换成机械能的电机。直流电机的励磁方式是指对励磁绕组如何供电、产生励磁磁通势而建立主磁场的问题。
根据励磁方式的不同,直流电机可分为下列几种类型:
1.他励直流电机
励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,图中M表示电动机,若为发电机,则用G表示。永磁直流电机也可看作他励直流电机。
2.并连直流电机
并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。
3.串连直流电机
串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源,这种直流电机的励磁电流就是电枢电流。
4.复连直流电机
复连直流电机有并励和串励两个励磁绕组,若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。
不同连磁方式的直流电机有着不同的特性。一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。
特点
(一)调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。
(二)起动力矩大。可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。
折叠编辑本段基本构造
分为两部分:定子与转子。记住定子与转子都是由那几部分构成的,注意:不要把换向极与换向器弄混淆了,记住他们两个的作用。
定子包括:主磁极,机座,换向极,电刷装置等。
转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等。
折叠编辑本段基本特点
1)电枢轴要延长,以便安装用于速度检测的脉冲发生器和推力轴接头。
2)转子直径要设计得小些,轴长要设计得长些,以适应高速旋转。
3)为了便于散热,电枢槽要设计得多些。
4)为了方便对换向器片、电刷等进行定期检查和维护,检查口应制造得大些。
5)为了防止由于振动而引起电刷的误动作,应提高电刷的预紧压力。
6)和其他电动汽车用电机相同,最大功率和额定功率记录在铭牌上。[1]
折叠编辑本段机械特性
电动机的转速n随转矩T而变化的特性n=f(T)称为机械特性。它是选用电动机的一个重要依据。各类电动机都因有自己的机械特性而适用于不同的场合。几种直流电动机的机械特性见图2、调速从直流电动机的电枢回路看,电源电压U与电动机的反电动势Eа和电枢电流Zа在电枢回路电阻Rа上的电压降必须平衡。即U=Ed+IdRd
反电动势又与电动机的转速n和磁通φ有关,电枢电流又与机械转矩M和磁通φ有关。即 z4系列直流电动机
Ed=Cφn,M=CφId,式中C为常数。由此可得式中n0为空载转速,k 为Rа/C2。以上是未考虑铁心饱和等因素时的理想关系,但对实际直流电动机的分析也有指导意义。由上可见直流电动机有3种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大;z4系列直流电动机且在轻负载时,由于负载电流小,串联电阻上电压降小,故转速调节很不灵敏。调节电枢端电压并适当调节励磁电流,可以使直流电动机在宽范围内平滑地调速。端电压加大使转速升高,励磁电流加大使转速降低,二者配合得当,可使电机在不同转速下运行。调速中应注意高速运行时,换向条件恶化,低速运行时冷却条件变坏,从而限制了电动机的功率。串励直流电动机由于它的机械特性(图2)接近恒功率特性,低速时转矩大,故广泛用于电动车辆牵引,在电车中常用两台或两台以上既有串励又有并励的复励直流电动机共同驱动。利用串、并联改接的方法使电机端电压成倍地变化(串联时电动机端电压只有并联时的一半),从而可经济地获得更大范围的调速和减少起动时的电能消耗。
折叠编辑本段主要分类
1.无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。
无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。
2.有刷直流电动机:有刷电动机的2个刷(铜刷或者碳刷)是通过绝缘座固定在电动机后盖上直接将电源的正负极引入到转子的换相器上,而换相器连通了转子上的线圈,3个线圈极性不断的交替变换与外壳上固定的2块磁铁形成作用力而转动起来。由于换相器与转子固定在一起,而刷与外壳(定子)固定在一起,电动机转动时刷与换相器不断的发生摩擦产生大量的阻力与热量。所以有刷电机的效率低下损耗非常大。但是,他同样具有,制造简单,成本及其低廉的优点!
折叠编辑本段主要特性
电动机的转速n随转矩T而变化的特性n=f(T)称为机械特性。它是选用电动机的一个重要依据。各类电动机都因有自己的机械特性而适用于不同的场合。几种直流电动机的机械特性见图2。
调速 从直流电动机的电枢回路看,电源电压U与电动机的反电动势Eа和电枢电流Zа在电枢回路电阻Rа上的电压降必须平衡。即U=Ed+IdRd
反电动势又与电动机的转速n和磁通φ有关,电枢电流又与机械转矩M和磁通φ有关。即 z4系列直流电动机
Ed=C
M=Cd式中C
为常数。由此可得式中n0为空载转速,k 为Rа/C2。以上是未考虑铁心饱和等因素时的理想关系,但对实际直流电动机的分析也有指导意义。由上可见直流电动机有3种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大;
且在轻负载时,由于负载电流小,串联电阻上电压降小,故转速调节很不灵敏。调节电枢端电压并适当调节励磁电流,可以使直流电动机在宽范围内平滑地调速。端电压加大使转速升高,励磁电流加大使转速降低,二者配合得当,可使电机在不同转速下运行。调速中应注意高速运行时,换向条件恶化,低速运行时冷却条件变坏,从而限制了电动机的功率。串励直流电动机由于它的机械特性(图2)接近恒功率特性,低速时转矩大,故广泛用于电动车辆牵引,在电车中常用两台或两台以上既有串励又有并励的复励直流电动机共同驱动。利用串、并联改接的方法使电机端电压成倍地变化(串联时电动机端电压只有并联时的一半),从而可经济地获得更大范围的调速和减少起动时的电能消耗。
折叠编辑本段其他资料
折叠起动
由于电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机(起动电流为额定电流的6~8倍)。
为了限制起动电流,常在电枢回路内串入专门设计的可变电阻,其原理接线见图1。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电动机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电动机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。
对容量较大的直流电动机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。
折叠控制结构
直流无刷电机的控制结构,直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响,N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),
控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷驱动器包括电源部及控制部:电源部提供三相电源给电机,控制部则依需求转换输入电源频率。电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),作为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。
折叠控制原理
直流无刷电机的控制原理,要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下
臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。
基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。
当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。
高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,P.I.D.控制的恰当与否也无法忽视。之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差(Error)。知道了误差自然就要补偿,方式有传统的工程控制如P.I.D.控制。但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能完全掌握,所以模糊控制、专家系统及神经网络也将被纳入成为智能型P.I.D.控制的重要理论。
快恢复二极管和慢恢复二极管的正向恢复时间谁更快
海飞乐Qlong绝缘二极管采用独特的硅基工艺。可提供极低的反向恢复电荷Qrr,并具有软恢复特性,这使得它们非常适合CCM升压PFC,并在硬开关应用中用作输出二极管。当PN硅二极管在导通和反向偏置期间关断时,电流将快速将至零,然后在二极管从正向导通中恢复时开始反向流经该二极管。负电流与时间的乘积被定义为反向恢复电荷或者Qrr。
这是每个开关周期的能量损耗。Qlong绝缘二极管具有极低的Qrr,与超快恢复二极管相比尤其低。另外,二极管的反向恢复还会导致EMI,在此波形中,可以看到用来缩短反向恢复时间的铂掺杂造成了一个非常陡峭的波形,其锐缘可产生大量的噪声。
二极管的软度被定位为时间Tb与时间Ta的比值.
例如,这种波形陡峭的二极管的软度为0.2,比较理想的软度系数是0.5,海飞乐Qlong二极管具有出色的软度,软度系数接近1.00。
减少二极管的Qrr值可降低MOS管的开关损耗,使你的设计能够在较高的频率下工作,从而降低磁性元件的尺寸和成本。
我们在CMM升压PFC电路测试中,发现Qlong二极管中开关孙高的降低使MOS管的温度下降了6.1°,这种热能的减少使得效率提高了1.1%,其他工程师在采用Qlong二极管后发现效率提高2.5%。低Qrr值可减少MOS的导通电流。使工程师使用更小成本的元件。
在这个设计中,因采用了Qlong二极管而使MOS的电流容量从21A下降到12A.
这提高了电源效率,使MOS管的温度下降了10°以上,同时并没有增加BOM成本。
海飞乐Qlong绝缘二极管的恢复软度有助于大幅度降低EMI,这以改进可降低EMI滤波器的尺寸和成本,或提供额外的性能以满足更具挑战性的规范要求。
Qlong二极管还适合充当输出二极管,在这个设计中换用Qlong二极管后,峰值反向电压大幅度降低,设计师可以完成移除缓冲电路,而且它的性能仍比原来的设计方案好。这不仅降低了设计成本和复杂度,而且还将效率提高了2%。
所有的Qlong二极管都表现出为平坦的Qrr温度依存性,可确保在不同工作范围内性能的一致性,并防止热逃逸。
Qlong二极管还以常见的阴极封装提供,这是高性能绝缘二极管首次采用的封装形式,这种封装可以减少交错并联和无桥式拓扑结构中所需安装的硬件数。对于CCM升压PFC,电动汽车充电器和许多其他硬开关应用来说,Qlong绝缘二极管在降低EMI,降低开关损耗和提供极高效率方面,都是性能最佳的硅二极管。
总结:Qlong绝缘二极管是对CCM升压PFC应用的完美补充,与高性能超快速PFC二极管相比,Qlong绝缘二极管具有非常低的反向恢复电荷,可将开关损耗降低80%以上。在直接替换测试中发现,Qlong绝缘二极管可带来1.5%的效率提升,整个电路优化后,效率可提升2.5%。还可以减少开关的导通电流尖峰,使设计师能够大幅度降低MOS管的电流额定值,从而节省成本和降低导通损耗。同时Qlong二极管还具有出色的软度,可降低EMI噪声和减少电压尖峰。海飞乐FAE建议Qlong绝缘二极管更适合开关频率在80kHz以上的应用。
Qlong绝缘二极管可以在桥式逆变器中用作反并联二极管,性能十分出色,具有极快速回复特性,且结电容低至11pF,因此它可以将开关损耗将至很低,从而大幅度提升转换器的效率,Qlong二极管的快速恢复时间可为器件提供击穿保护,即使在高工作频率下也能提供此保护,这样,工程师就可以提高开关频率,以减少磁性尺寸和大幅提高功率密度,同时降低EMI噪声干扰,即使在提高开关频率的过程中也具有次特性,对于高性能,高频率逆变器,我们建议采用具有超低损耗的Qlong绝缘二极管。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467