发布时间:2024-07-20 22:10:16 人气:
磁悬浮列车工作原理
1、导向方式磁悬浮列车利用电磁力的作用进行导向。现按常导磁吸式和超导磁斥式两种情况简述如下。
常导磁吸式的导向系统与悬浮系统类似,是在车辆侧面安装一组专门用于导向的电磁铁。车体与导向轨侧面之间保持一定间隙。
当车辆左右偏移时,车上的导向电磁铁与导向轨的侧面相互作用,使车辆恢复到正常位置。控制系统通过对导向磁铁中的电流进行控制来保持这一侧向间隙,从而达到控制列车运行方向的目的。
超导磁斥式的导向系统可以采用以下 3 种方式构成:
(1)在车辆上安装机械导向装置实现列车导向。这种装置通常采用车辆上的侧向导向辅助轮, 使之与导向轨侧面相互作用(滚动摩擦)以产生复原力,这个力与列车沿曲线运行时产生的侧向力相平衡,从而使列车沿着导向轨中心线运行。
(2)在车辆上安装专用的导向超导磁铁,使之与导向轨侧向的地面线圈和金属带产生磁斥力,该力与列车的侧向作用力相平衡,使列车保持正确的运行方向。这种导向方式避免了机械摩擦,只要控制侧向地面导向线圈中的电流,就可以使列车保持一定的侧向间隙。
(3)利用磁力进行导引的“零磁通量”导向系铺设“8” 字形的封闭线圈。当列车上设置的超导磁体位于该线圈的对称中心线上时,线圈内的磁场为零;而当列车产生侧向位移时,“8”字形的线圈内磁场为零,并产生一个反作用力以平衡列车的侧向力,使列车回到线路中心线的位置。
2、推进方式
磁悬浮列车推进系统最关键的技术是把旋转电机展开成直线电机。它的基本构成和作用原理与普通旋转电机类似,展开以后,其传动方式也就由旋转运动变为直线运动。
常导磁吸式磁悬浮采用短定子异步直线电机。在车上安装三相电枢绕组,轨道上安装感应轨。采用车上供电方式。这种方式结构比较简单,容易维护,造价低,适用于中低速城市运输及近郊运输以及作为短程旅游线系统;主要缺点是功率偏低,不利于高速运行。
其中TR 型快速动车和上海引进 的 Transrapid 06 号磁悬浮列车,以及日本的 HSST型磁悬浮列车都采用这种形式。超导磁斥式磁悬浮采用长定子同步直线电机。其超导电磁体安装在车辆上,在轨道沿线设置无源闭合线圈或非磁性金属板。
作为磁浮装置的超导电磁线圈的采用,为直线同步电机的激磁线圈处 于超导状态提供了方便条件。它们可以共存于同一 个冷却系统,或者同一线圈同时起到悬浮、导向和推进的作用。
高速长定子同步直线电机牵引系统的构成相对复杂。地面牵引系统,供电一个区间(长约30km)区间又分成许多段(约300-1000 m),每段只有列车通过时供电,各段切换由触点真空开关完成。
为使列车在段间不冲动,需两组逆变器轮 流供电,其特点为大功率、高压、大电流。动力在地面的优势有路轨电机的功率强以及车辆的设计简化、重量轻。适用于高速和超高速磁悬浮铁路。日本和加拿大决定发展这种磁悬浮系统。
4、列车动能
“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。
只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。
我们知道,电动机的“定子”通电时,通过电流对磁场的作用就可以推动“转子”转动。不过耗电量巨大,就像一个个电动机铺满轨道,当向轨道这个“定子”输电时,通过电流对磁场的作用,列车就像电动机的“转子”一样被推动着做直线运动。
扩展资料:
磁悬浮技术优缺点
1、优点
磁悬浮列车有许多优点:列车在铁轨上方悬浮运行,铁轨与车辆不接触,不但运行速度非常快,可以超过500 千米/小时,;无噪音,不排出有害的废气,有利于环境保护。由于无需车轮,不存在轮轨摩擦而产生的轮对磨损,减少了维护工作量和经营成本。
它是21 世纪理想的超级特别快车,世界各国都十分重视发展磁悬浮列车。至2012年,中国和日本、德国、英国、美国等国都在积极研究这种车。日本的超导磁悬浮列车已经过在轨试验,即将进入实用阶段,运行时速可达300千米以上。
磁悬浮列车运行时与轨道保持一定的间隙(一般为1—10cm),因此运行安全、平稳舒适、无噪声,可以实现全自动化运行。
磁悬浮列车的使用寿命可达35年,而普通轮轨列车只有20—25年。磁悬浮列车路轨的寿命是80年,普通路轨只有60年。目前的最高时速是日本L0型磁悬浮列车在2015年达到的603公里/小时。
据德国科学家预测,到20年,磁悬浮列车采用新技术后,时速将达1000公里。而当前中国的轮轨列车运营速度最高时速为496公里 (法国 TGV 电气火车最高时速在2007年的测试中达到过574.8公里/小时)。
2、缺点
据称,在陆地上的交通工具没有轮子是很危险的。要克服很大的惯性,只有通过轮子与轨道的制动力来克服。磁悬浮列车没有轮子,如果突然停电,靠滑动摩擦是很危险的。
而对于磁悬浮,当遭遇突然停电,采取的是机械臂锁死轨道强制停车,这正是磁悬浮相对于轮轨滑动摩擦制动方式而言会更加危险,会导致车毁人亡的悲剧,国外无一例建造正是此特点。
此外,磁悬浮列车又是高架的,发生事故时在5米高处救援很困难,没有轮子,拖出事故现场困难;若区间停电,其他车辆、吊机也很难靠近。但是相比较于其他轮轨铁路,不论高铁、地铁,还是轻轨,也同样是高架的。
2006年,德国磁悬浮控制列车在试运行途中与一辆维修车相撞,报道称车上共29人,当场死亡23人,实际死亡25人,4人重伤。这说明磁悬浮列车突然情况下的制动能力不可靠,不如轮轨列车。说明磁悬浮列车突然情况下的制动能力远远比不上轮轨列车,且安全性没有轮轨火车高(轮轨安全性高数十倍)。
百度百科-磁悬浮技术
百度百科-磁悬浮列车
山东省首条地铁
青岛三号线。作为山东省的第一条地铁线路,青岛三号线全长25公里,设22座车站。连接青岛市的两座火车站,即:位于青岛西南部的青岛火车站和青岛北站。三号线经过青岛市沿海的多个重要地标,包括汇泉广场、中山公园、太平角公园以及五四广场。
阿尔斯通为三号线整条线路的144辆地铁车厢提供牵引和列车控制系统。该合同于2011年与青岛地铁公司签署。至今,中国的19条地铁线路已经安装了阿尔斯通的牵引系统,包括北京六号线和十五号线,青岛三号线等。
系统组成:
阿尔斯通供应的OptONIX牵引系统,包括牵引逆变器、电机、辅助逆变器以及列车网络控制系统等。通过使用再生电制动,这套牵引系统可以提高列车运营性能,降低生命周期成本。
与该系统配套的列车网络控制系统,有效地对接、控制并且监测列车的各个设备和流程,从而整合整个系统。
青岛三号线车辆上使用的OptONIX牵引系统以及列车控制系统均由阿尔斯通在中国的合资厂,上海阿尔斯通交通电气设备有限公司(SATEE),组织生产。牵引系统所需的电机全部由阿尔斯通另一家合资厂,西安阿尔斯通永济电气设备有限公司生产。
阿尔斯通比利时的沙勒罗瓦厂和法国的瓦郎贤辅助提供软件,法国的维勒班和塔布厂,以及比利时的沙勒罗瓦厂辅助提供部件。
磁悬浮列车的原理是什么?
1911年,荷兰物理学家昂内斯将水银冷却到-40℃,使它凝固为一条线,并对它通以电流。当温度降至-268.9℃时,他发现水银中的电阻突然消失了。后来,人们把这种电阻突然消失的现象叫做“超导”现象。进一步的研究发现:处在超导状态下的物质,具有完全导电性和完全抗磁性两个基本特性。超导体的完全抗磁性,会对磁铁产生一个向上的斥力,足以抵消磁铁下落的重力,于是磁铁便会悬空飘浮。磁悬浮列车就是利用磁极同性相斥的原理,将超导磁体安装在列车底部,其线圈内流着持久的激磁电流,产生很强的磁场,再在轨道上铺设连续的良导体薄板。电流从超导体中流过时,产生磁场,形成一种向上的推力,当推力与车辆重力平衡时,车辆就可悬浮在轨道上方一定的高度了。通过改变电流来控制磁场强度,就能使悬浮高度得以调整。这种悬浮的车体因与轨道间没有机械接触和摩擦,所以运行时无震动、无污染,也不会脱轨,而且由于摩擦阻力减小,行车速度大大提高。
磁悬浮列车集计算机、微电子感应、自动控制等高新技术于一体,运行时的悬浮、启动、加速、转弯、减速、停车、下落等各环节,均已实现了自动控制,并做到准确无误,安全可靠。
磁悬浮列车的结构原理
悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。
电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。
超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。
超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。
推进系统:磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的"转子"一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。
通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。
推进系统可以分为两种。“长固定片”推进系统使用缠绕在导轨上的线性电动机作为高速磁悬浮列车的动力部分。由于高的导轨的花费而成本昂贵。而“短固定片”推进系统使用缠绕在被动的轨道上的线性感应电动机(LIM)。虽然短固定片系统减少了导轨的花费,但由于LIM过于沉重而减少了列成的有效负载能力,导致了比长固定片系统的高的运营成本和低的潜在收入。而采用非磁力性质的能量系统,也会导致机车重量的增加,降低运营效率。
导向系统:导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。
磁悬浮列车原理
是运用磁铁同性相斥,异性相吸的性质,使磁铁具有抗拒地心引力的能力,即磁性悬浮。用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。
扩展资料:
注意事项:
磁悬浮列车的最高速度可达每小时500公里以上,比轮轨高速列车的300多公里还要快。
由于磁悬浮列车是悬浮于轨道上行驶,导轨与机车之间不存在任何实际的接触,成为无轮状态,故其几乎没有轮、轨之间的摩擦,时速高达几百公里。
磁悬浮列车可靠性大、维修简便、成本低,其能源消耗仅是汽车的一半、飞机的四分之一,噪音小,当磁悬浮列车时速达 300公里以上时,噪声只有65分贝,仅相当于一个人大声地说话,比汽车驶过的声音还小。
百度百科-磁悬浮列车
广深准高速铁路的发展回顾
这是广深很早的时候实施准高速改造的规划。开中国高速铁路先河,为后来的中国铁路大提速积累了宝贵经验。根据我国发展高速铁路的战略设想,除了要建设新高速铁路外,在近期内选定试验区段,对既有线路进行技术改造,这样可用较少的投资、较短的时间将既有线路改造成能够开行时速160公里旅客列车的准高速铁路。同时,还可以为我国大量既有铁路的进一步改造和修建高速铁路提供技术储备和积累经验。主要原因
从时速160公里起步的主要原因是:
1.技术上的条件。160公里/小时是准高速的起点,是通往200公里/小时及其以上高速的桥梁,是传统技术的延伸与新技术的发展的接续点,可以继往开来。在近期内实现160公里/小时的行车速度,在我国现有的机车车辆、线路、通信信号等方面已有一定的基础,虽然还有一些技术难点要解决,但经过努力攻关,是能达到的;
2.经济上的条件。在既有线上进行适当的技术改造,达到160公里/小时准高速行车的要求,比要实现200公里/小时以上的高速行车、修建高速铁路新线的投资少得多,减少了资金筹集的困难。 因此,选择160公里/小时作为起步,是从实际出发的。
在近期内建设中高速铁路,经过对我国重要铁路干线的反复深入比选,确定先将广州至深圳线改建为实现旅客列车160公里/小时的准高速铁路,是因为广深线具有其它铁路线所没有的优越条件:
1.从地理位置上看,广深线处于我国的南大门,是改革开放的最早的窗口。它紧邻港澳,是珠江三角洲和港澳之间的重要纽带,港澳台同胞和国际友人来往频繁的重要通道。改革开放以来,进出深圳的旅客、物资剧增,其中旅客每年约2000万人次,高峰时日达8万人次,其中70%是港澳台人员;
2.香港—-九龙段已经电气化,广深线的进一步改造完善,为香港回归祖国创造了更好的交通条件;
3.广深线处于我国铁路网的尽头,进行改造、试验对整个路网运输的影响很小;
4.全长147.3公里,长度适中。是一条以客运为主的线路,基本上白天运行旅客列车,夜间运行货物列车,客货列车之间的互相干扰较小,行车组织比较简单;
5.基本上已经建成了复线铁路。地形条件较好,沿线主要是丘陵地带,没有大隧道,深路堑、高路堤很少,因此技术改造难度小,投资少,工期短,见效快。
6.有较好的外部建设条件。广东省的高速公路已先行一步,产生了较大影响。修建高速铁路能得到当地的大力支持,与高速公路相辅相成,可以促进珠江三角洲经济的进一步发展;
7.旅客运输高速与当地的社会经济意识相适应。港澳台旅客时间观念强,迫切期望列车越快越好,并对调整票价具有较高的承受能力;
8.客运量大,经济效益好。现广—-九直通旅客列车每对年收入达600万美元。提高速度后,将发挥比飞机票价低、比公路和快艇速度快的优势。现在口岸进口的人数中,乘坐火车的仅占18%,铁路行车速度提高后,运行时间由1小时59分缩短为1小时左右,吸引了更多的旅客,效益进一步提高。 因此,选择广深线作为我国建设高速铁路的第一个台阶,缩短与发达国家科技上的差距,加强内地与港澳台地区的联系,在政治、经济、技术等方面都有重大意义。
广深线改造为准高速铁路的主要运营指标为:
1.旅客列车最高运行速度为160公里/小时;
2.货物列车的设计速度为80公里/小时;
3.广州至深圳间的特快列车运行时间为1小时左右;
4.旅客列车对数为81对/日;
5.货物列车对数为25~26对/日(其中摘挂列车5对);
6.旅客输送能力为2500万人次/年;
7.货运量为1500万吨/年;
8.列车追踪最小间隔时间为8分钟(自动闭塞)。
线路设备
广深线为了实现运行速度160公里/小时,直达旅客列车运行时间1小时左右等运营要求,以及保证行车和人身安全,线路方面的主要技术指标为:
1.线路等级:1级干线,对软土地段进行改造,加固既有桥梁;
2.正线:复线;
3.限制坡度:仙村以北6‰,以南8‰;
4.最小曲线半径:原小于1600米的改成1600米,特别困难地段不小于1400米;其中200公里/小时试验段以内的不小于2200米;
5.缓和曲线形式:三次抛物线;
6.夹直线长度:一般地段80米,困难地段70米;
7.竖曲线:R=1000圆曲线;
8.线路间距:区间正线4米,站内到发线之间以及到发线与阵线之间5米;
9.到发现有效长:现存以北850米,以南650米;
10.轨道: (1)结构:60公斤/米钢轨无缝线路成套轨道; (2)道岔:正线采用60公斤AT可动心轨、加外锁高速道岔; (3)转撤机:电动液压式;
11.道口及区间:道口全部改为立交;区间设全封闭隔栅栏;为方便居民交通,增设一部分人行天桥;
12.轨道状态检测及维修:配备满足准高速铁路运行的多功能检测车、大型养路维修机械等设备。 根据以上要求,从原有线路平、纵断面等具体条件出发,是确定线路改造工程的基础。
鉴于线路平、纵断面情况及主要技术指标的要求,选择改造工程方案时满足的基本条件为:
1.为保证直达高速列车的行车时间缩短为1小时左右,并保持广深准高速铁路的完整性,以最高速度160公里/小时连续行车的区段最小长度不小于100公里;
2.为了实现旅客输送能力2000万人次/年,货运量1500万吨/年,必须改造原有线路的一些咽喉要道;
3.在工程、投资、安全等方面有综合效益。 改造工程完成后,广深准高速铁路全程的直达旅客列车运行时分,上行型约为59.7分钟,下行约为60.8分钟。
机车车辆
为了实现运营要求,在机车车辆方面的主要技术指标有:
1. 牵引方式近期为内燃机车牵引,电气化改造后为电力牵引;
2. 货运机车功率应能保证旅客列车编组辆数不少于12辆 ;
3. 货运列车牵引定数为上行2400吨,下行2700吨;
4. 所有运行速度160公里/小时的旅客列车均为空调列车;
5. 软席客车采用转动式可躺座椅,硬席客车与现有的相同;
6. 机车、客车在160公里/小时的走行性能均应符合现行标准的要求;
7. 速度160公里/小时的列车紧急制动距离为1400米。
关于机车车辆的选定,牵引方式是前提条件。就广深线而言,理想方式是电力牵引,除了可以合理利用资源、减少污染以及功率容量易于满足提高速度的要求等优点以外,由于广深线改造还附有我国铁路铁路现代化,实现更高旅客列车运行速度提供技术经验的任务,因此,电力牵引要比内燃机车牵引有利得多。此外,在用内燃机车牵引时,通常尚需在列车中编挂发电车为空调提供电源,而在电力牵引时就可以直接由接触网获得电能,从而可以改挂一辆客车,增加列车载客量。 但是考虑到当前的种种条件,国家资金有限,京广线南段尚未电气化等,因此,仍应作两手准备,即从现实条件出发,近期采用内燃机车,同时积极准备尽早实现电力牵引。
CRH1A型动车组
CRH1A型动车组的原型车是庞巴迪运输为瑞典国家铁路提供的Regina C2008型。2004年6月,铁道部展开为用于中国铁路第六次大提速、时速200公里级别的第一轮高速动车组技术引进招标,中外合资企业青岛四方-庞巴迪-鲍尔铁路运输设备有限公司(BSP)为中标厂商之一,获得了20列的订单。2004年10月12日,铁道部与BSP正式签订合同,合同编号790,铁道部代表签约方为广州铁路(集团)公司。2005年5月30日,广深铁路股份有限公司决定以25.83亿元人民币的价格向BSP另外订购20列时速200公里级别动车组,以满足广深铁路第四线于2008年开通之后的运营需求;同年8月25日,广深铁路公司董事会通过有关议案。而BSP的40列时速200公里级别动车组其后最终被定型为CRH1A,动车编号为CRH1-001A~CRH1-040A。
CRH1A采用交流传动及动力分布式,标称速度为200公里/小时,持续运营速度为200公里/小时,最大运营速度为250公里/小时,但实际运用中CRH1A的最大运营速度受动车组微机控制系统软件锁定(软件限速),初期最高运营速度为205公里/小时,至后期大部分均放宽至220公里/小时。列车编组方式是全列8节,包括5节动车及3节拖车(5M3T),其中包括2节一等座车,5节二等座车,1节二等座车/餐车。动车
组轴重不大于16吨,牵引总功率5300千瓦,车体为不锈钢焊接结构。列车在2、7号车厢设有受电弓及附属装置,受电弓工作高度最低5.3米、最高6.5米。动车组正常运行时,采用单弓受流,另一台备用,处于折叠状态。车端连接装置采用德国系统的夏芬伯格式10号(英语:Scharfenberg Type 10、德语:Scharfenbergkupplung Typ 10)密接全自动车钩,内置机械、空气、电气连接机构和通路。头车两端采用半自动密接车钩,内有机械、空气连接机构和通路,带有车钩引导杆(Coupler alignment bar),容许两组动车重联运行。列车网络控制系统采用符合IEC 61375标准的TCN分布式智能网络系统,通过网络对列车及各设备实施控制、监视和诊断。
牵引及供电系统方面,CRH1型电力动车组采用交-直-交传动,即牵引电源经过单相定频交流电压→固定直流电压→三相变压变频交流电压的转换后,供应交流牵引电动机并驱动列车运行。首先,受电弓通过接触网接入25,000V(50Hz)的高压交流电,输送给牵引变压器,降压成单相902V(50 Hz)的交流电。降压后的交流电再输入整流器,2台并联的四象限脉冲整流器模块(LCM)将输入的交流电整流成两路1650V直流电,其中一路直流电再经2台IGBT牵引逆变器模块(MCM)逆变成电压和频率均可控制的三相交流电,输送给牵引电动机牵引列车。同时,另一路直流电输入辅助逆变器模块(ACM),同步将1650V直流电逆变成三相876V(50 Hz)交流电,输出至滤波箱的三相变压器,变压并输出三相400V(50 Hz)交流电源输出至列车上的用电设备。另外,牵引变流器在再生制动过程中,也负责将牵引电动机产生的电能反馈至电网上。动车组的牵引电动机采用了三相鼠笼异步交流电动机,架悬式安装在转向架上,冷却方式为强迫风冷,电动机控制方式为矢量控制。电动机通过联轴节链接驱动齿轮,最后带动轮对输出力矩。
CRH1A动车组全部由BSP在青岛的厂房组装生产。第一组列车(CRH1-001A)于2006年8月30日在青岛出厂,并在同年9月至12月间先后到北京环型铁路试验场、遂渝铁路、京沪铁路、胶济铁路、陇海铁路和广深铁路等地进行试验。2007年2月1日起,CRH1A动车组正式开始在广深线投入载客试运行,首发车次为T971次,由广州东站出发前往深圳站。最初生产的11组CRH1A(CRH1-001A~011A)的风笛是置于驾驶室挡风玻璃上方,在其后出厂的车辆(CRH1-012A~040A)则改至列车首尾两端的连结器整流罩两侧。而首批CRH1A型的最后一列(CRH1-040A)已于2009年3月7日出厂并交付上海铁路局。CRH1A又在2009年10月开始配属成都铁路局,运行重庆北-遂宁-成都的城际列车。
2010年7月,中国铁道部向BST追加订购40列CRH1A(CRH1-081A~CRH1-120A),订单总值7.61亿美元,折合约52亿元人民币,其中庞巴迪的份额为3.73亿美元。这批CRH1A增购车将于2010年9月开始交付,到2011年5月交付完毕。第二批CRH1A动车组在第一批的基础上作了少量改进,除了列车最大运营速度因取消了软件限速而达到时速250公里/小时,及对部分列车设备重新布置,最明显的差异是四号和五号车厢的座席布置。五号车厢由二等座车/餐车(ZEC)改为一等/二等座车(ZYE),采用一等包厢座席和二等座混合布置,二等座座席数量减少至61个,但新增了四个一等座包间共16个座席,其中2人包间和6人包间各两个,五号车厢总定员77人。而四号车厢则由二等座车改成二等座车/餐车。按铁道部统一计划,CRH1A增购车将供南昌铁路局、成都铁路局和广州铁路集团分配运用。
2012年9月,中国铁道部更改有关和谐号CRH380D型电力动车组的订单,在新订单中,铁道部将订购46列CRH1A及60列新一代CRH1。新一代CRH1将使用铝合金车身以减轻重量、增强牵引系统、优化列车气密性及减少能源消耗。
由于CRH1主要用于城际运输,加上车体外观与地铁列车相似,而其原形车(Regina C2008)在国外都是以两节或三节短编组运行,所以中国国内铁路迷普遍将CRH1型动车组称为“地铁”。铁道迷对此型车有“大地铁”的昵称。列车通常运行沪宁、沪杭线的城际列车,其发车密度大约只有15分钟左右,犹如城市轨道交通线路;另外列车设计也酷似上海轨道交通6号线、8号线的AC10、AC12列车。
什么是磁悬浮列车,工作原理是什么?
是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度,适合于城市间的长距离快速运输。
常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
磁浮技术分为轨道、车辆、牵引、运行控制四大系统,有16项核心技术。德国、日本与中国为世界上目前有磁浮列车试验或营运路线的国家。磁悬浮列车利用电磁力的作用进行导向。现按常导磁吸式和超导磁斥式两种情况
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467