发布时间:2024-05-26 13:20:18 人气:
逆变器工作原理 看看这专业的解释
逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻辑和滤波电路组成。下面让我们来深入的了解逆变器工作原理。一、逆变器工作原理
1、全控型逆变器工作原理:为通常使用的单相输出的全桥逆变主电路,交流元件采用IGBT管Q11、Q12、Q13、Q14。并由PWM脉宽调制控制IGBT管的导通或截止。
当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。由于LC交流滤波器作用,使输出端形成正弦波交流电压。
当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。
2、半控型逆变器工作原理:半控型逆变器采用晶闸管元件。改进型并联逆变器的主电路如图4所示。图中,Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。这样,Th1与Th2换流,然后电容器C又反极性充电。如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。
在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。D1和D2是2只反馈二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。
二、逆变器分类详解
1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。
2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。
3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。
4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。
5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。
6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。
7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。
8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。
9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。
10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。
以上对逆变器工作原理及分类进行了详解,希望对你的理解能有帮助。更多请持续关注土巴兔装修网。土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.phpto8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~
逆变器原理图讲解
逆变器原理如下:1、当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止;2、电流由直流电源正极输出,经Q11、L或感、变压器初级线圈到Q14回到电源负极;3、当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈电感到Q12回到电源负极;4、此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压;5、由于LC交流滤波器作用,使输出端形成正弦波交流电压。当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。
中频炉电路原理
中频炉主要由电源、感应圈及感应圈内用耐火材料筑成的坩埚组成。坩埚内盛有金属炉料,相当于变压器的副绕组,当感应圈接通交流电源时,在感应圈内产生交变磁场,其磁力线切割坩埚中的金属炉料,在炉料中就产生了感应电动势,由于炉料本身形成闭合回路,此副绕组的点是仅有匝而且是闭合的。所以在炉料中同时产生感应电流,感应电流通过炉料时,对炉料进行加热促使其熔化。
中频电炉利用中频电源建立中频磁场,使铁磁材料内部产生感应涡流并发热,达到加热材料的目的。中频电炉采用200-2500Hz中频电源进行感应加热,熔炼保温,中频电炉主要用于熔炼碳钢,合金钢,种钢,也可用于铜,铝等有色金属的熔炼和提温.设备体积小,重量轻,率高,耗电少,熔化升温快,炉温易控制,生产率高。
简单说中频炉熔炼原理就是;电能通过设备转换成热能的过程。
工频50HZ的三相交流电通过设备里的可控硅整流,变成脉动的直流电源,再通过可控硅逆变,向炉体输出1KHZ左右的交流[称中频]电能,中频电流通过炉体线圈时,把电能转换成磁场形式的磁能,也就是在炉体内产生交变磁场,当炉体内有钢材时,会在钢材内部感应出涡流,这个涡流会使钢材很快升温,将磁能转换成热能,从而 终完成电能和热能的转换。
逆变器的线圈怎么绕
高频逆变器的变压器线圈绕制方法 :首先用纸盒或塑料片根据铁芯面积做一个线圈架,然后在线圈架上绕线圈。先绕初级,初级绕好后,用电容器纸或牛皮纸绕三层,做为初次级的绝缘,再绕次级,次级两个54圈(这个变压器输入是220伏,输出是双27V)按照这样可以得出每圈是0.5V,也就是初级是440圈绕成的,次级绕好后再绕二层电容器纸或牛皮纸与铁芯绝缘,然后插铁芯,可以三片铁芯一起交叉插。铁芯插好后通电试验,如果电压符合要求,浇绝缘漆烘干,线圈的层与层之间可用电容器纸或牛皮纸绝缘。初级用薄纸,也可不用。
补充介绍:
高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电,最后通过工频逆变电路得到220V工频交流电供负载使用。高频逆变器的优缺点:高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。
中频电炉整流功率和逆变功率关系
相互制约。
1、整流功率:整流器用于将输入的交流电源转换为直流电源,以满足逆变器对直流电源的需求,是指整流器的输出功率,也就是从电网获取的能量,整流功率比逆变功率要大,整流过程会带来一定的能量损耗。
2、逆变功率:逆变器将直流电源转换为高频交流电源,供应给感应线圈进行感应加热,是指逆变器输出的交流电源的功率,用于实际的加热过程,逆变功率取决于所需的加热功率和逆变器的效率。
高频逆变器中如何绕制高频变压器的线圈
高频线圈在逆变器中的工作原理是,高频逆变器中高频变压器的绕制包括两方面:
第一是:要注意每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应。
所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强)。高频线圈采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线。例如初级的3T+3T,你如果用直径2.50mm的单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求。这种导线方法有两种
第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,第二种方法导线的表面积大得多,因为后者是前者的48.92L/7.85L=6.2倍。导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制,次级75T高压绕组用3~5根并绕即可。
第二是:高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频线圈的漏感和降低分布电容。
例如高频变压器的线圈的绕法,初级分两层,次级分三层三段,具体是:
1、绕次级高压绕组第一段,接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半。
2、绕初级低压绕组的一半,预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同,然后又包一层绝缘纸,准备绕次级高压绕组第二段。
3、绕次级高压绕组第二段.将前面没有剪断的次级高压绕组线翻转上来(注意与前面的初级绕组线不要相碰,必要时可用绝缘纸隔开),又并绕25T,注意绕向要与前面的第一段相同,线仍不剪断.又包一层绝缘纸,准备绕初级低压绕组的另一半。
4、绕初级低压绕组的另一半,再按步骤2同样的方法绕一次初级低压绕组,注意绕向要与前面的一半相同.同样线剪断,包一层绝缘纸,准备绕次级高压绕组第三段。
5、绕次级高压绕组第三段,再按步骤3提示的方法绕完剩下的次级高压绕组25T,仍注意绕向与前面的两段相同。接好引出线(尾),线剪断。至此,所有的绕组都绕完了。
6、合并初级低压绕组,将前面两次绕的初级低压绕组,头与头并接,中心抽头与中心抽头并接,尾与尾并接(这样绕组匝数仍是3T+3T,而总的并线为38根),接好引出线,即得到初级低压绕组的头、中、尾三个引出端.最后缠一层绝缘胶带,至此线包制作完成。
中频电源的功率为什么上不去?该怎么解决?
中频电炉在使用过程中,常常会出现中频电源的功率上不去的问题,这是什么原因导致的呢今天,就让小编为大家分析一下这其中的原因以及一些解决的办法。 故障现象: 装有中频电源的中频设备只能在低功率的条件下正常工作,当直流电压调节的过高的时候,设备就会出现过流的保护动作。 故障原因: 这是因为负载的交流等效电阻过小了。特别是中频炉用到后期的时候炉衬的厚度逐渐减小了,启动之后通常都是直流电压小,电流大,中频电压也小,交换电流就会显得相对比较困难,逆变器容易被颠覆,功率就很难升上去了。 解决办法: 适当的把电流信号瓷盘电位器调高。等到炉子里面的原料熔化之后再把IC值恢复到正常状态。此外感应线圈匝间绝缘不良,在电压低的时候尚且还可以工作,但中频电压过高的时后绝缘被击穿导致匝间发生短路,交流等效电阻会快速的变小,逆变十分容易被颠覆。处理的方法是除掉炉衬,把感应圈的绝缘处理好就可以正常工作了。
中频炉高频限制报警是什么原因
1、整流器某只晶闸管没有触发脉冲或触发不导通引起报警。这时应先用示波器看一下六个整流晶闸管的门极脉冲。如果有的话。关机后用万用表200Ω档测量一下各个门极电阻。将不通或者门极电阻特别大的那只晶闸管换掉即可。
2、逆变器三桥臂工作。表现为输出电流特别大。
3、感应线圈发生故障。应按时检查感应线圈情况。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467