发布时间:2024-04-07 08:40:44 人气:
新能源技术重要里程碑!全球首次构网型光储系统并网测试完成
今日,由国家电网青海电科院联合中国电力科学研究院有限公司共同开展的,全球首次构网型光储系统并网性能现场测试顺利完成。
作为中国新能源技术发展的重要里程碑,这一测试的结论充分验证了:在加强电网运行特性和实现高可再生能源目标方面,与传统跟网型新能源发电系统相比,构网型新能源发电系统可发挥关键作用。而测试工作的顺利完成,也为我国日后新能源为主体的新型电力系统的安全稳定运行,提供有效理论依据。
值得一提的是,就在2022年12月31日,国内首座大型构网型储能电站——湖北荆门新港储能电站工程成功送电、并网运行。
_可再生能源比例进一步提升构网型技术应运而生
这一技术被看作“高比例可再生能源电力系统稳定的关键”,有望在下一代电网中占据重要一席。
整体而言,储能逆变器主要有两种典型控制技术,即跟网型控制技术与构网型控制技术。目前,并网储能逆变器通常采用跟网型控制模式,即逆变器根据电网的电压频率产生相应的有功功率和无功功率。
但随着愈来愈多的新能源和电力电子设备接入,电力系统惯性减小、系统强度变弱趋势明显,稳定性问题愈发严重,构网型路线逐步受到青睐。与跟网型储能相比,这一技术可提供同步电压电流,为电网提供虚拟惯性等优势;在极端环境下,还可以提供故障穿越、黑启动及有功无功稳定功能,同时减少备用线路的改造需求,保障电网稳定,最终实现100%可再生能源供电。
_目前仅少数国家掌握这一技术
据国网青海电科院专业人员介绍,构网型技术世界上仅有少数国家掌握,此前基本上处于研发阶段。
此前,我国工信部等五部门联合印发《加快电力装备绿色低碳创新发展行动计划》,其中提出加速发展清洁低碳发电装备,包括推动构网型新能源发电装备研究开发。
另外,澳大利亚可再生能源局去年12月已划拨1.75亿澳元,用于支持8个电池储能项目,储能规模共计2GW/4.2GWh,这些项目全部为构网型储能新建或改造项目。
美国能源部也投资2500万美元,支持建立通用构网型逆变器联盟(UNIFI),该联盟由美国国家可再生能源实验室、美国电力科学研究院和华盛顿大学主导。
A股中,国电南瑞子公司南瑞继保构网型储能系统已在浙江绍兴、安徽金寨、新疆阿克陶等地陆续投运;
明阳智能日前获得全球首个风机构网型功能证书;
四方股份电力电子设备采用构网型的控制策略,构网型产品适应新型电力系统技术需求,是储能PCS领先的控制技术;
许继电气在新能源消纳方面,布局包括面向区域电网智能调控的源网荷储协同控制系统、构网型光伏发电系统。
储能行业的测试需求是如何发展的?
储能行业是目前非常热门的行业之一,当前的测试需求基本和光伏行业一致,主要测试储能逆变器的输入电压、电流、功率、谐波、效率等参数,应用的仪器也主要是光伏那一类,如功率分析仪、示波器、数采等设备,具体的测试需求升级建议参考下ZLG致远电子的测试仪器,他们在这一块研究的还是挺多的,尤其是功率分析仪,据说已经支持了储能的自动化测试。光伏逆变器都储能么
储能机和普通逆变器不同,且技术含量高。普通逆变器发电并网卖给国家,储能机发电可优先给负载使用,剩下的电可以存储在电池当中,我用的固德威的储能机很好,具体参数你可以去他们网站看一下。储能逆变器检测平台都要完成那些测试项目?
储能产业爆发,储能逆变器作为产业链中重要的一环也在迅速增值,因此,对于储能逆变器进行系统的测试和调试平台的开发显得尤为重要。
随着新能源电子设备的多样化发展,控制程序算法的复杂化需要通过测试平台获取更多数据,传统的测试平台虽然能够满足基本的测试需求,但却无法更好地满足对数据传输速度的要求。
测试平台在获取数据的过程中对数据的传输速率要求较高,同时还需要具备更多的实用性功能。
基于此,针对平台对于储能逆变器人机交互的实际需求,构建一个可以根据用户的需求进行历史数据存储的测试软件平台,是当前的研究重点。
1、测试平台需求分析
1.1储能逆变器
在智能电网的建设中,储能逆变器凭借自身的双向变流功能可以完成一些特殊的功能。作为一种双向变流器,不仅可以完成电网电能之间的能量传输,还可以完成储能电能之间的能量传输,适用于多种直流储能单元中。
在直流储能单元中,储能逆变器可以快速完成分布式发电的功能,提高电网对于可再生能源电力的接纳。根据系统的特性,在负荷的低谷期,需要储存更多的发电量以备不时之需,在负荷的高峰期所释放的能量,可以有效提高电网的供电质量。图1为储能逆变器在电网中的结构网络。
储能逆变器适用于大容量储能电池的充放电,在充放电系统应用时,可以实现双向流动,实现智能化、稳定性和安全性等优势。
在进行储能逆变器的整个开发过程中,利用示波器完成对电信号的全面检测,使用储能逆变器控制算法进行实际电信号量的研究所获取的量较少,利用示波器对大量的数据进行检测的过程中,多少会存在一些问题,虽然可以获取储能逆变器的电信号,但是经过传感器进行信号转换后,通过AD进行采集不一定保证采集量的正确性。
因此,为了确保系统的正常运行,对程序的变量进行观察非常有必要。在进行程序观测的过程中,使用断点观测的方式较多,在进行弱电电路的程序调试和应用时,断点观测是一种非常有效的调试方法,但是在大功率的设备调试中,断点观测无法更好地预知大功率设备的状态,容易引发短路故障,存在一定的安全隐患,对于工作人员的安全作业非常不利。
通过调试软件可以让刷新功能得到保障的同时,提高安全隐患。在进行储能逆变器大功率设备的测试过程中,会遇到很多故障问题。发生故障后,如果没有及时保存算法的变量信息,将无法准确获取故障点的位置和原因。
因此,在进行储能逆变器的测试和调试过程中,谐波含量的大小是测试的一个重要指标,可以实时获取储能逆变器的谐波含量,对于储能逆变器的测试非常重要。基于以上问题,开发储能逆变器测试软件平台十分有必要。
1.2需求分析
储能逆变器测试软件平台的设计由人机交互测试平台和数据采集模块两部分组成,测试平台展示如图2所示。
对于储能逆变器的传感器模块而言,完成信号的转换是一大亮点。通过获取AD小信号的数据,利用DSP控制器进行处理后通过以太网通信模块将数据发送到PC端。
测试软件平台通过PC端口读取以太网中的数据信息,实现对数据的处理,并通过测试平台完成对数据结果的全面分析。
根据上述对于储能逆变器测试软件平台的总体设计,对其进行功能模块的需求分析:
(1)上下位机高速通信:传统的总线通信速率为460800bps[4],为了提高通信的准确度,一般采取最多的是9600bps。CAN总线的通信速率为1Mbps,与工业以太网的总线差距较大;
传统总线的可靠性较低,采用CAN或者工业以太网方可满足通信传输稳定性的设计需求;由于上下位机数据的通信中,上位机一般使用PC,CAN总线进行上下位机通信时,需要通过接口卡进行数据处理,因此使用CAN的成本较高。
(2)后台数据处理:通过测试软件平台接收数据后完成对数据的处理,主要由储能逆变器的后台完成。
(3)数据显示与人机交互:储能逆变器测试软件平台的后台主要负责对数据进行处理,通过显示数据完成对数据的操作,并实现最终的人机交互。
2、测试平台结构及算法设计
2.1总体结构
储能逆变器测试软件平台通过工业以太网获取数据后,需要对数据进行运算分析处理,在实现数据展示的同时,也可以根据用户的设置需求,对历史数据进行存储,测试平台的数据处理流程如图3所示。
在储能逆变器的测试软件平台开发时,采用三层结构体系,包括应用层、业务逻辑层和控制层,对软件中的各个层次任务进行分工处理,有助于软件的开发。
2.2谐波检测算法
2.3效率计算方法
2.4高速通信协议
3、测试平台模块实现
3.1数据采集模块实现的过程为:
电压电流传感器→信号调理电路→AD→DSP,通过传感器将强电信号转化为弱点信号,通过AD采集后利用以太网将数据发送到测试平台中。
在本系统的设计中,数据采集模块主要通过AD公司旗下的8通道、16位的芯片AD7606,完成输入信号的采样,让所有的通道采集速率都可以达到200kSPS。
3.2以太网通信模块的实现实现过程为:
数据采集模块→DSP→RTL→储能逆变器测试软件平台。测试软件平台的数据传输利用工业以太网进行,将数据采集模块中的数据通过DSP传输到以太网的控制器中,以太网将其传输到测试平台中。
上下位机的数据通信使用RTL8019AS进行通信,该控制器的电路简单,操作方便,通信速率高,可以满足该平台的设计需求。
3.3谐波检测模块的实现使用基-2FFT算法实现
通过蝶形运算,完成对FFT算法的谐波检测分析。有效值计算模块的实现,在同等电阻上增加直流和交流,通过交通流量的周期,让直流和交流的热量相等,得到交通流量的有效值。
4、结语
储能逆变器的测试软件平台设计,主要是针对储能逆变器而开发的一款测试软件,该软件也可以应用在其他的逆变器中进行调试。
通过对谐波检测算法的分析,得到抑制频谱泄露的原理,对进一步提高测试平台的实时性具有显著作用。
通过对各个模块的功能实现进行分析后得到,使用C++可以实现储能逆变器的测试软件平台设计,完成对谐波分析、检测、采集、计算、显示和保存等功能的分析,验证了该设计方案的可行性。
储能逆变器检测平台主要完成测试那些项目
储能双向逆变器容量达到500KW,完成测试项目包括:
1、 并网工作的电气性能检测:包括防孤岛效应、过欠压保护、过欠频保护等等;
2、 储能变流器BMS性能检测:模拟各类电池组状态,精确测量BMS灵敏度及工作性能;
3、 储能变流器的效率检测:充电效率检测、逆变效率检测;
4、 储能控制器对储能装置(电池、电容)的充电功能,测试充电过程曲线,分析储能控制器的充放电特性;
5、 测试储能控制器的输入、输出的直流特性,包括稳压精度、稳流精度、效率实验、限压特性、限流特性、恒功率特性、纹波系数、输入输出过欠压报警保护试验、反接保护实验、短路保护实验、软启动性能实验;
6、 储能控制器对能量流向的控制,自动控制各能量设备接入时间和切离时间;
7、 测试各能量设备切入切出对系统的影响,是否实现无缝切换、无功率波动切换;
8、 测试储能控制器在不同负荷状态下的工作效率;
9、 测试工作过程,各个部件的温度变化情况,考核设备的温升功能;
10、 测试带有BMS电池管理系统的储能电池组的工作特性;
11、 通过锂电池模拟检测平台,可以测试BMS电池管理系统的性能。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467