
家用太阳能发电系统逆变器的电路结构包括什么变压器形式
光伏发电逆变器主电路
太阳能电池一般是电压源,因此逆变器的主电路采用电压型,太阳能光伏发电系统用逆变器的三种主电路形式如图1所示。图1(a)是采用工频变压器主电路形式,采用工频变压器使输入与输出隔离,主电路和控制电路简单。为了追求效率,减少空载损耗,工频变压器的工作磁通密度选得比较低,因此重量大,约占逆变器的总重量的50%左右,逆变器外形尺寸大,是最早的一种逆变器主要形式。
图1:逆变器主电路图
图1(b)是高频变压器主电路形式,采用高频变压器使输入与输出隔离,体积小,重量轻。主电路分为高频逆变和工频逆变两部分,比较复杂,是20世纪90年代比较流行的主电路方式。
图1(b)
图1(c)是无变压器主电路形式,不采用变压器进行输入与输出隔离,只要采取适当措施,同样可保证主电路和控制电路运行的安全性,体积最小,重量轻,而且效率高,成本也较低。主电路包括升压部分和采用高频SPWM的逆变部分,比工频变压器主电路形式要复杂,但是适应输入直流电压范围宽,有利于与太阳能电池进行匹配。尽管由于天气等因素使太阳能电池输出电压发生变化,但有了升压部分,可以保证逆变部分输入电压比较稳定。将成为今后主要的主电路流行方式。
图1(c)
为了使无变压器主电路形式安全运行,必须采取一定的技术措施:首先要使太阳能电池对地电压保持稳定;其次,为了防止太阳能电池接地造成主电路损坏,应检测太阳能电池正极和负极的接地电流(通过零相互感器),如果不平衡电流超过规定值,说明太阳能电池有可能接地,接地保护立即动作,切断主电路输出,停止工作。由于无变压器主电路形式没有变压器对输入与输出隔离,因此逆变器输入端的太阳能电池的正负极不能直接接地,输出的单相三线制中性点接地,因太阳能电池面积大,对地有等效电容存在(正极等效电容和负极等效电容)。该等效电电容将在工作中出现充放电电流,其低频部分有可能使供电电路中的漏电开关误动作而造成停电,其高频部分将通过配电线路对其它用电设备造成电磁干扰,而影响其它用电设备正常工作。对这种对地等效电容电流必须在主电路加电感L1与电容C1组成的滤波器进行抑制,特别是抑制高频部分。而工频部分,可以通过控制逆变器开关方式来消除。当然在太阳能电池与主电路之间,还应当设置共模滤波器,防止对太阳能电池的电磁干扰。
2.电力电子器件
用于太阳能光伏发电系统逆变器(含输入直流斩波级)的功率半导体器件主要有MOSFET、IGBT、超结MOSFET。其中MOSFET速度最快,但成本也最高。与此相对的IGBT则开关速度较慢,但具有较高的电流密度,从而价格便宜并适用于大电流的应用场合。超结MOSFET介于两者之间,是一种性能价格折中的产品,在实际设计中被广为应用。概括地说,选用哪类器件取决于成本、效率的要求并兼顾开关频率。如果要求硬开关在100kHz以上,一般只有MOSFET能够胜任。在较低频段如15kHz,如没有特殊的效率要求,则选择IGBT。在此之间的频率,则取决于设计中对转换效率和成本的具体要求。系统效率和成本之间作为一对矛盾,设计中将根据其相应关系对照目标系统要求确定最贴近系统要求的元件型号。表1为三种半导体开关器件的功率损耗,为了便于比较,各参数均以MOSFET情况作归一化处理,超结MOSFET工艺目前没有超过900V的器件。
除去以上最典型的三类全控开关器件,业界有像碳化硅二极管和ESBT等基于新材料和新工艺的产品。它们目前的价格还比较高,主要应用于对太阳能光伏发电效率有特殊要求的场合。但随着生产工艺的不断进步和器件单价的下降,这类器件也将逐步变为主流产品,甚至替代上述的某一类器件。
以下为两种可运用的于特殊光伏发电场合的逆变器:
(1)单相全桥混合器件模块与三电平混合器件模块
混合单相全桥功率模块,是专用于光伏发电系统中单相逆变的产品,配合以单极型调制方法,每个桥臂的两只开关管分别工作在完全相异开关频率范围,上管总是在工频切换通断状态,而下管总是在脉宽调制频率下动作。根据这种工作特点,上管选用相对便宜的门极沟道型(Trench)IGBT以优化通态损耗,而下管可选择非穿通型(NPT)IGBT以减少开关损耗。这种拓扑结构不但保障了最高系统转换效率还降低了整个逆变设备的成本。图3给出了不同器件搭配的转换效率曲线以印证这种功率模块的优越性。可以发现,这种混合器件配置在不同负载下能实现98%以上的转换效率。
在美高森美的三电平逆变模块中,也引入了混合器件机制,充分利用两端器件开关频率远高于中间相邻两器件。因而APTCV60系列三电平模块两端使用超结MOSFET,中间为IGBT的结构,可进一步提高效率。
(2)ESBT
ESBT是应用于太阳能光伏发电系统中的一种新型高电压快速开关器件,它兼顾了IGBT和MOSFET的优点,不仅电压耐量高于MOSFET,而且损耗小于快速IGBT器件。美高森美即将推向市场的ESBT太阳能升压斩波器模块,集成了碳化硅二极管和ESBT,面向5kW~205kW的超高效率升压应用。其电压为1200V,集电极和发射极间饱和通态电压很低(接近1V),优化开关频率在30kHz~40kHz之间,可选择单芯片模块或双芯片模块封装。实验表明,这种功率模块比目前市场上对应的IGBT模块减少40%的损耗。根据6kW的参考设计实验结果,此模块在50%至满负载之间,转换效率比最快的IGBT器件要提高至少0.6个百分点。因此,在碳化硅全控器件的价格下降到可接受的范围之前,对于超高效率的太阳能光伏功率变换应用,ESBT将是优选开关器件。
光伏发电逆变器原理方框图
逆变器是一种把直流电能(电池、蓄电池)转变成交流电(一般为220伏50HZ正弦波或方波)的装置。我们常见的应急电源,一般都是把直流电瓶逆变成220V交流的。简单来讲,逆变器就是一种将直流电转化为交流电的装置。
性能优良的家用逆变电源电路图
这种设计,材料易取,输出功率150W,本电路设计频率为300HZ左右,目的是缩小逆变变压器的体积、重量、输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。这款逆变器较为容易制作,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG2驱动,来控制BG6和BG7工作。其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。在制作时,变压器可选有常用双12V输出的市电变压器。可根据需要,选择适当的12V蓄电池容量。
高效率的正弦波逆变器电器图
该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。
当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。
C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产生较大的阻抗。C5由公式:50=算出。L一般为70H,制作时最好测一下。这样C为0.15μ左右。R4与R3的比值要严格等于0.5,大了波形失真明显,小了不能起振,但是宁可大一些,不可小。开关管的最大电流为:I==25A。
现有的逆变器,有方波输出和正弦波输出两种。方波输出的逆变器效率高,对于采用正弦波电源设计的电器来说,除少数电器不适用外大多数电器都可适用,正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点,如何选择这就需要根据自己的需求了。
光伏并网逆变器的工作原理
逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。
全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。
光伏发电逆变器工作原理
逆变器的工作原理:1.直流电可以通过震荡电路变为交流电 2.得到的交流电再通过线圈升压(这时得到的是方形波的交流电)3.对得到的交流电进行整流得到正弦波AC-DC就比较简单了 我们知道二极管有单向导电性可以用二极管的这一特性连成一个电桥让一端始终是流入的 另一端始终是流出的这就得到了电压正弦变化的直流电 如果需要平滑的直流电还需要进行整流 简单的方法就是连接一个电容
逆变器电路图
上图是一个简单逆变器电路图,其原理如下:
C2是隔直电容,可以保护电路不过载,R2是振教荡调节电阻,大小为1-2欧,L1,L2是初级线圈,L3、L4是自振荡线圈,L5是输出线圈。
电源接通,电流通过R2限流,流经L3、L4中间抽头,再经两头尾抽头到功率管基极导通功率管,经L1、L2初级线圈,产生一次初级电流,再经变压器耦合,在L5形成次级电流,第一次振荡完成。在L1、L2形成电流同时,L3、L4也通过变压器形成第二次感应电流,再次导通功率管,这样这个自激振荡电路就这样振荡下去,直到断电或管子烧坏。
太阳能电池板原理图
太阳能电池等团缓效电路图亮或纯敬咐
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467